期刊文献+

一种基于改进蚁群算法的三维K-栅栏覆盖算法 被引量:4

A 3D K-Barrier Coverage Algorithm Based on Improved Ant Colony Algorithm
下载PDF
导出
摘要 为解决三维环境下无线传感器网络的K-栅栏覆盖问题,提出一种改进的蚁群优化算法3D-ACO。将三维表面映射到二维平面进行网格划分,通过计算网格梯度并引入空间权重及部署方向角来改进蚁群算法寻找最短路径构建栅栏,采用移动节点填补栅栏间隙以确保构建强栅栏。实验结果表明,与strong optimal和strong greedy算法相比,该算法能够在有效提高节点利用率的同时降低节点能耗,并且在三维环境下所构建的栅栏覆盖具有较强的自适应性。 To address the K-barrier coverage problem of Wireless Sensor Network(WSN)in 3D environment,this paper proposes the 3D-ACO,an improved ant colony optimization algorithm.The 3D surface is mapped to a 2D plane for meshing generation.The spatial weight and deployment direction angle are introduced by mesh gradient to improve the ant colony algorithm,thus finding the shortest path to construct the barrier.The mobile nodes are used to fill the gaps between the barriers,so as to ensure the constructed barriers are strong barriers.Experimental results show that compared with the strong optimal and strong greedy algorithms,the proposed algorithm can effectively improve the utilization of nodes while reducing the energy consumption of nodes.Besides,the barrier coverage constructed in 3D environment has strong adaptability.
作者 党小超 李月霞 郝占军 张彤 DANG Xiaochao;LI Yuexia;HAO Zhanjun;ZHANG Tong(College of Computer Science and Engineering,Northwest Normal University,Lanzhou 730070,China;Gansu Province Internet of Things Engineering Research Center,Lanzhou 730070,China)
出处 《计算机工程》 CAS CSCD 北大核心 2020年第2期221-229,共9页 Computer Engineering
基金 国家自然科学基金(61662070,61762079) 甘肃省科技重点研发项目(1604FKCA097,17YF1GA015) 甘肃省科技创新项目(17CX2JA037,17CX2JA039)
关键词 无线传感器网络 栅栏覆盖 蚁群算法 网格划分 空间权重 部署方向角 Wireless Sensor Network(WSN) barrier coverage ant colony algorithm meshing generation spatial weight deployment direction angle
  • 相关文献

参考文献9

二级参考文献69

  • 1任彦,张思东,张宏科.无线传感器网络中覆盖控制理论与算法[J].软件学报,2006,17(3):422-433. 被引量:156
  • 2ZOU Y, CHAKRABARTY K. Sensor deployment and target localization based on virtual forces[A]. INFOCOM 2003[C]. NC, USA, 2003. 1293-1303.
  • 3PODURI S, SUKHATME G. Constrained coverage in mobile sensor networks[A]. IEEE International Conference on Robotics and Automation (ICRA)[C]. Los Angeles, CA, USA, 2004. 40-50.
  • 4KAR K, BANERJEE S. Node placement for connected coverage in sensor networks[A]. Proceedings of WiOpt[C]. INRIA Sophia- Antipolis, France, 2003.50-52.
  • 5ERDICHIAN M S, KOUSHANFAR F, QLJ G, et al. Exposure in wireless ad hoc sensor networks[A]. Proceeding of the 7th Annual International Conference on Mobile Computing and Networking (MobiCom)[C]. Rome, Italy, 2001. 139-150.
  • 6VELTRI G, HUANG Q, QU G, et al. Minimal and maximal exposure path algorithm for wireless embedded sensor networks[A]. Proceedings of the 1st International Conference on Embedded Networked Sensor Systems (SenSys)[C]. Los Angeles, CA, USA, 2001.40 -50.
  • 7CHAKRABARTY K, IYENGAR S S. Grid coverage for surveillance and target location in distributed sensor networks[J]. IEEE Transactions on Computers, 2002, 51(5): 1448-1453.
  • 8KUMAR R, KUMAR V, TSIATSIS M. Computation hierarchy for in-network processing[A]. The 2nd ACM International Conference on Wireless Sensor Networks and Applications[C]. San Diego, CA, USA, 2003.68-77.
  • 9TOUMPIS S, TASSIULAS L. Optimal deployment of large wireless sensor networks[J]. IEEE Transactions on Information Theory, 2006, 52(7): 2935-2953.
  • 10YANG Y, SHUHUI Y, MINGLU L. Scan-based movement-assisted sensor deployment methods in wireless sensor networks[J]. IEEE Transactions on Parallel and Distributed Systems, 2007, 18(8): 1108-1121.

共引文献84

同被引文献27

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部