摘要
The early diagenesis processes of several redox-sensitive trace metals(RSMs)(Mo, U and V) were studied with several short sediment cores(~25 cm) collected in the northern Okinawa Trough(OT). Pore water vertical profiles indicated that the sedimentary environments in all cores were between oxic and suboxic, not yet reaching anoxic sulfidic conditions. The recycling process of Mo in sediments was clearly associated with Mn and yielded little authigenic accumulation, while U showed a downcore increase in sediment and its authigenic mass accumulation rate(MAR) was estimated to be ~23% of the Changjiang(Yangtze) and Huanghe(Yellow) riverine flux. Benthic diffusive fluxes and MAR were calculated and the comparison of them showed that U and V fluxes matched relatively well both in direction and in magnitude, implying that diffusion processes at the sedimentwater interface is the dominant process controlling the remobilization or burial of V and U in northern OT. This work provided a systematic study(both in pore water and solid phase) on the RSMs geochemical behaviors during early diagenesis process, yielding a quantitative assessment of the remobilization or burial fluxes of the RSMs in northern OT. Such studies are in general lacking in the coastal margin of Northwest Pacific Ocean.
The early diagenesis processes of several redox-sensitive trace metals(RSMs)(Mo, U and V) were studied with several short sediment cores(~25 cm) collected in the northern Okinawa Trough(OT). Pore water vertical profiles indicated that the sedimentary environments in all cores were between oxic and suboxic, not yet reaching anoxic sulfidic conditions. The recycling process of Mo in sediments was clearly associated with Mn and yielded little authigenic accumulation, while U showed a downcore increase in sediment and its authigenic mass accumulation rate(MAR) was estimated to be ~23% of the Changjiang(Yangtze) and Huanghe(Yellow) riverine flux. Benthic diffusive fluxes and MAR were calculated and the comparison of them showed that U and V fluxes matched relatively well both in direction and in magnitude, implying that diffusion processes at the sedimentwater interface is the dominant process controlling the remobilization or burial of V and U in northern OT. This work provided a systematic study(both in pore water and solid phase) on the RSMs geochemical behaviors during early diagenesis process, yielding a quantitative assessment of the remobilization or burial fluxes of the RSMs in northern OT. Such studies are in general lacking in the coastal margin of Northwest Pacific Ocean.
基金
The National Key Basic Research Program of China under contract No.2013CB429704
the NSFC-Shandong Joint Fund for Marine Science Research Centers under contract No.U1606401
the National Natural Science Foundation of China under contract No.41776095
the National Program on Global Change and Air-Sea Interaction under contract No.GASI-GEOGE-03