摘要
条码的解码景深是条码解码能力的重要评估指标。解码景深越长,对模糊条码的识别能力要求越高。该问题是一个典型的盲去模糊问题。本文结合条码的二值化特性,基于自回归模型,设计相应的优化函数和优化方法,提出条码图像盲去模糊算法Blind-TVDWSAR。通过仿真实验和实拍图像实验验证了所提算法的有效性。将该算法嵌入条码识读设备发现,相比未做盲去模糊,条码解码景深有至少5cm的延拓效果。
The field depth of barcode-decoding is an important evaluation index for barcode recognition, which is a typical blind deconvolution problem. The further the decoding depth of field, the greater the requirement of barcode recognition. Based on total-variation and double well regularity and simultaneous auto-regressive model, this paper proposes a barcode image blind deblur algorithm named Blind-TVDWSAR. The effectiveness of the proposed method is verified by simulation and actual experiments. By embedding this algorithm into the barcode-recognition device, it is found that the field depth of barcode-decoding has a continuation effect of at least 5 cm.
作者
何学智
HE Xuezhi(Newland Digital Technology Co.,Ltd.,Fuzhou,China,350015)
出处
《福建电脑》
2020年第1期1-5,共5页
Journal of Fujian Computer
基金
福建省科技重大专项(No.2019HZ020012)
福建省科技计划区域发展项目(No.2018H4004)
装备预研基金(No.6140137050207)资助
关键词
盲去模糊
自回归模型
条码
解码景深
Blind Deblur
Auto-regressive
Total-variation
Barcode
Field Depth of Barcode-decoding