期刊文献+

基于改进全卷积神经网络的图像单像素边缘提取 被引量:6

Single-Pixel Edge Extraction of Image Based on Improved Fully Convolutional Neural Network
下载PDF
导出
摘要 为实现复杂背景图像中高精度边缘的准确提取,提出一种改进的单像素边缘提取算法。在改进的全卷积神经网络中,通过添加辅助输出层与采取多尺度输入的方式初步提取图像多像素边缘,并利用分水岭算法对多像素边缘进行细化重定位,从而获取图像单像素边缘。磁瓦图像上的应用结果表明,该算法具有较强的鲁棒性,能提取高精度且完整连续的单像素边缘。 To accurately extract high precision edges in complex background images,this paper proposes an improved single-pixel edge extraction algorithm.In the improved fully convolutional neural network,this method adds an auxiliary output layer and adopts a multi-scale input method to coarsely extract multi-pixel edges of an image.Then the watershed algorithm is used to refine and relocate the multi-pixel edges to obtain a high precision single-pixel edge of an image.Application results on magnetic tile images show that the algorithm has strong robustness and can extract complete continuous high precision single-pixel edges.
作者 刘畅 张剑 林建平 LIU Chang;ZHANG Jian;LIN Jianping(School of Mechanical Engineering,Tongji University,Shanghai 201804,China)
出处 《计算机工程》 CAS CSCD 北大核心 2020年第1期262-270,共9页 Computer Engineering
基金 2017年智能制造综合标准化与新模式应用项目“磁性材料智能制造新模式应用”
关键词 单像素边缘检测 全卷积神经网络 分水岭算法 距离误差 磁瓦图像 single-pixel edge detection fully convolutional neural network watershed algorithm distance error magnetic tile image
  • 相关文献

参考文献6

二级参考文献72

  • 1刘文予,白翔,朱光喜.基于边界曲线演化模型的生长骨架算法[J].自动化学报,2006,32(2):255-262. 被引量:9
  • 2TSAI Duming, CHAO Shinmin.An anisotropic diffusion-based defect detection for sputtered surfaces with inhomogeneous textures[J].Image and Vision Computing, 2005, 23(3): 325-338.
  • 3ZHANG Xiang, KUHLEN K, KUHLENK?TTER B.Automatic classification of defects on the product surface in grinding and polishing[J].International Journal of Machine Tools & Manufacture, 2006, 46(1): 59-69.
  • 4CHAPELLE O, HAFFNE P, VAPNIK V N.Support vector machines for histogram-based image classification[J].IEEE Transactions on Neural Networks, 1999, 10(5): 1055-1064.
  • 5SUYKENS J A K, VANDEWALLE J.Least squares support vector machine classifiers[J].Neural Processing Letters, 1999, 9(3): 293-300.
  • 6CHEUNG C F, HU K, JIANG X Q, et al.Characterization of surface defects in fast tool servo machining of microlens array using a pattern recognition and analysis method[J].Measurement, 2010, 43(9): 1240-1249.
  • 7CHIOU Y C, LI Weichen.Flaw detection of cylindrical surfaces in PU-packing by using machine vision technique[J].Measurement, 2009, 42(7), 989-1000.
  • 8ROSATI G, BOSCHETTI G, BIONDI A, et al.Real-time defect detection on highly reflective curved surfaces[J].Optics and Lasers in Engineering, 2009, 47(3/4): 379-384.
  • 9DEINIS A, FRED M, CHIRISTOPHE D, et al.Vision system for defect imaging, detection, and characterization on a specular surface of a 3D object[J].Image and Vision Computing, 2002, 20(8): 569-580.
  • 10FAN K C, CHEN S H, CHEN J Y, et al.Development of auto defect classification system on porosity powder metallurgy products[J].NDT & E International, 2010, 43(6): 451-460.

共引文献40

同被引文献55

引证文献6

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部