期刊文献+

基于机器学习的网络流量分类算法 被引量:6

A network traffic classification algorithm based on machine learning
下载PDF
导出
摘要 互联网应用的蓬勃发展产生了种类多样的网络流量。在网络技术不断进化的过程中,新型流量和流量加密技术的出现,使基于端口和基于有效载荷的传统网络流量分类算法的应用受到限制。为了实现对新型网络流量的自动分类,提出了一种基于机器学习的网络流量分类算法。通过选择特征属性和构建决策树模型,能够实现对流量级别的网络数据进行自动分类。使用网络流量分类领域的公开数据集进行训练和测试,并将测试结果与开源的机器学习平台Weka运行结果相比较,实验结果表明:所构建模型性能优良,在流量分类准确度与Weka平台相近甚至更优的前提下,大幅降低了建模时间,提高了网络数据分类的效率。 The boom of the Internet has spawned a variety of network traffic.During the continuous evolution of Internet,the emergence of new traffic and encryption technologies have limited the development of traditional network traffic classification algorithms,such as the methods based on port and payload.In order to classify emerging network traffic automatically,a network traffic classification algorithm based on machine learning is proposed.By means of feature selection and decision tree algorithm,a classification model is built to deal with the flow-level data collected from the Internet.An open data set is employed as the training set and the testing set,and the experimental results are compared with Weka,an open-source machine learning platform.It is indicated that the accuracy of the classification model is similar to or even better than the result of Weka,while the modeling time is far less than Weka and the efficiency of network data classification is improved.
作者 吕品 潘思羽 许嘉 李陶深 LYU Pin;PAN Si-yu;XU Jia;LI Tao-shen(School of Computer,Electronics and Information,Guangxi University,Nanning 530004,China;Guangxi Key Laboratory of Multimedia Communications and Network Technology,Nanning 530004,China;Guangxi Colleges and Universities Key Laboratory of Parallel and Distributed Computing,Nanning 530004,China)
出处 《广西大学学报(自然科学版)》 CAS 北大核心 2019年第6期1650-1657,共8页 Journal of Guangxi University(Natural Science Edition)
基金 国家自然科学基金资助项目(61402513) 广西自然科学基金资助项目(2016GXNSFBA380182,2018GXNSFAA294108) 广西八桂学者专项经费项目 广西大学科研基金资助项目(XGZ150322,XGZ141182)
关键词 机器学习 流量分类 决策树 信息熵 属性选择 machine learning network traffic classification decision tree information entropy feature selection
  • 相关文献

参考文献4

二级参考文献21

  • 1迟庆云.决策树分类算法及其应用[J].枣庄学院学报,2005,22(5):29-32. 被引量:9
  • 2乔向杰,陈功平.数据挖掘中分类算法的可扩展性研究[J].信阳师范学院学报(自然科学版),2006,19(2):239-242. 被引量:6
  • 3Moore AW, Zuev D. Internet traffic classification using Bayesian analysis techniques. In: Proc. of the 2005 ACM SIGMETRICS Int'l Conf. on Measurement and Modeling of Computer Systems, Banff, 2005. 50-60. http://www.cl.cam.ac.uk/-awm22 /publications/moore2005internet.pdf.
  • 4Madhukar A, Williamson C. A longitudinal study of P2P traffic classification. In: Proc. of the 14th IEEE Int'l Syrup. on Modeling, Analysis, and Simulation. Monterey, 2006. http://ieeexplore.ieee.org/xpl/ffeeabs_all.jsp?arnumber=1698549.
  • 5Moore AW, Papagiannaki K. Toward the accurate identification of network applications. In: Dovrolis C, ed. Proc. of the PAM 2005. LNCS 3431, Heidelberg: Springer-Verlag, 2005.41-54.
  • 6Karagiannis T, Papagiannaki K, Faloutsos M. BLINC: Multilevel traffic classification in the dark. In: Proc. of the ACM SIGCOMM. Philadelphia, 2005. 229-240. http://conferences.sigcomm.org/sigcomm/2005/paper-KarPap.pdf.
  • 7Roughan M, Sen S, Spatscheck O, Dutfield N. Class-of-Service mapping for QoS: A statistical signature-based approach to IP traffic classification. In: Proc. of the ACM SIGCOMM Internet Measurement Conf. Taormina, 2004. 135-148. http://www.imconf.net/imc-2004/papers/p 135-roughan.pdf.
  • 8Zuev D, Moore AW. Traffic classification using a statistical approach. In: Dovrolis C, ed. Proc. of the PAM 2005. LNCS 3431, Heidelberg: Springer-Verlag, 2005. 321-324.
  • 9Nguyen T, Armitage G. Training on multiple sub-flows to optimise the use of Machine Learning classifiers in real-world IP networks. In: Proc. of the 31 st IEEE LCN 2006. Tampa, 2006. http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=4116573.
  • 10Eerman J, Mahanti A, Arlitt M. Internct traffic identification using machine learning techniques. In: Proc. of the 49th IEEE GLOBECOM. San Francisco, 2006. http://pages.cpsc.ucalgary.ca/-mahanti/papers/globecom06.pdf.

共引文献223

同被引文献51

引证文献6

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部