期刊文献+

无线携能通信时隙与功率联合优化算法研究 被引量:4

Research on joint optimization algorithm for time slot and power in SWIPT
下载PDF
导出
摘要 传统通信系统由于不能够有效利用射频信号的能量会导致传输能耗较高,所以必须合理分配资源,在信息和能量传输间获得折中,即保证充足的传输能量并尽可能提高系统的信息传输性能.因此,为了节约通信系统的能量,本文提出通信系统在多个时隙同时传输信息和能量从而实现无线携能通信.首先,将传输时间分成若干时隙,发射机按照要求在不同时隙内发送信息或者能量;然后,接收机在对应时隙内接收信息或者收集能量,并利用收集的能量提供电路耗能;最后,通过联合优化时隙和功率分配,在保证系统能量需求基础上最大化系统传输速率.仿真结果表明:相比等时间功率分配算法,提出算法的传输效率提高了约40 bps;且随着时隙数增加,提出算法性能显著提高.当传输能量增加时,可分配的信息功率更大;而当能量需求增加时,信息功率会降低,更多的功率用于能量传输.因此,提出算法通过为信息传输和能量采集合理分配时隙和功率,保证充足的采集能量基础上,最大化信息传输性能,系统通过采集无线能量有效提高了传输性能. Traditional communication system fails to utilize the energy of radio frequency signals effctively,which can result in high transmission energy consumption.Therefore,resources must be allocated reasonably to achieve a compromise between information and energy transmission.That is to ensure sufficient transmission energy and improve the information transmnission performance of the system as much as possible.In order to save the energy of the communication system,this paper proposes that the communication system simultaneously transmits information and energy in multiple time slots to realize Simultaneous W ireless Information and Power Transfer(SWIPT).First,the transmission time was divided into a number of time slots,and the transmitter transmitted information or energy in different time slots as required.Then,the receiver collected information or harvested energy in the corresponding time slot,and the obtained energy was used to provide circuit energy consumption.Finally,by jointly optimizing the time slot and power allocation,the system transmission rate was maximized based on the guaranteed system energy requirements.Simulation results show that compared with the equal-time power allocation algorithm,the.transmission efficiency of the proposed algorithm was improved by about 40 bps,and the performance was significantly improved with the increase of the number of the time slots.When the transmission energy increased,the distributable information power was greater.When the energy demand increased,the information power decreased,and more power was used for energy transmission.Hence,an algorithm was proposed to maximize the performance of information transmission by reasonably allocating time slots and power for information transmission and energy harvesting to ensure sufficient acquisition energy.Therefore,the proposed algorithm could improve the transmission performance efectively via harvesting the wireless power.
作者 宋志群 刘玉涛 吕玉静 张中兆 SONG Zhiqun;LIU Yutao;LU Yujing;ZHANG Zhongzhao(School of Electronics and Information Engineering,Harbin Institute of Technology,Harbin 150001,China;The 54th Research Institute of China Electronic Technology Group Corporation,Shijiazhuang 050000,China)
出处 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2020年第5期35-40,共6页 Journal of Harbin Institute of Technology
基金 国家自然科学基金(61571162,61871153)。
关键词 多时隙 无线携能通信 吞吐率 拉格朗日优化 multi-slot Simultaneous W ireless Information and Power Transfer throughput Lagrangian optimization
  • 相关文献

参考文献2

二级参考文献30

  • 1HUANG T C, HSIEH C Y, YANG Yao-yi, et al. A Bat- tery-Free 217 nW Static Control Power Buck Converter for Wireless RF Energy Harvesting With Calibrated Dynamic On/Off Time and Adaptive Phase Lead Control [ J ]. IEEE Journal of Solid- State Circuits,2012,47(04) :852-862.
  • 2ZHANG Yan-qing, ZHANG Fan, SHAKHSHEER Y, et al. A Batteryless 19 mW MICS/ISM-Band Energy Harvesting Body Sensor Node SeC for ExG Applications [ J ]. IEEE Journal of Solid-State Circuits,2013,48(01 ) :199-213.
  • 3OUDA M H,ARSALAN M,MARNAT L, et al. 5.2-GHz RF Power Harvester in 0.18-μm CMOS for Implantable Intraocular Pressure Monitoring [ J ]. IEEE Transactions on Microwave Theory and Techniques, 2013, 61(05): 2177-2184.
  • 4HARB A. Energy Harvesting : State- of- the - all [ J ]. Renewable Energy, 2011(36): 2641-2654.
  • 5BROWN W. The History of Power Transmission by Radio Waves [ J]. IEEE Transactions on Microwave Theory and Techniques, 1984, MTr-32 (09) : 1230-1242.
  • 6WU Ke, CHOUDHURY D, MATSUMOTO H. Wireless Power Transmission Technology and Applications [ J ]. Proceedings of the IEEE, 2013, 101 (06) : 1271-1275.
  • 7GARNICA J, CHINGA R A, LIN J. Wireless Power Transmission: From Far Field to Near Field [ J ]. Pro- ceedings of the IEEE, 2013, 101(06) : 1321- 1331.
  • 8BERND S II, CHANG Kai. Microwave Power Transmis- sion: Historical Milestones and System Components [ J ]. Proceedings of the IEEE, 2013, 101 (06) : 1379-1396.
  • 9PINUELA M, MITCHESON P D, LUCYSZYN S. Am- bient RF Energy Harvesting in Urban and Semi-Urban Environments [ J ]. IEEE Transactions on Microwave Theory and Techniques, 2013, 61(07): 2715-2726.
  • 10AL-LAWATI M, AL-BUSAIDI M, NADIR Z. RF En- ergy Harvesting System Design for Wireless Sensors [ C ]//9th International Multi- Conference on Systems, Signals and Devices. Chemnitz, Germany: 1EEE Press, 2012 : 1-4.

共引文献19

同被引文献21

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部