摘要
目的:通过数据挖掘分析浙江省某肿瘤专科医院10种常见恶性肿瘤住院费用的影响因素,研究药品零差率政策对住院费用产生的影响。方法:运用SPSS Modeler14.1和SPSS l9.0软件,以年龄、疾病种类等作为影响因素,分别采用BP神经网络模型和递归模型来评价各因素对住院费用的影响,并将两个结果进行比较研究。结果:两个模型研究结果的一致性达到75%;药品零差率对住院费用的影响在各因素中排位第4,对住院费用有较为明显的降低作用。结论:两个模型拟合度良好,且所得出的结果相近;药品零差率政策的实施一定程度上减轻了患者的疾病经济负担。
Objectives:Data mining method was used to analyze the factors influencing the hospitalization expenses of ten common tumors,realizing whether the zero mark-up drug policy will affect the hospitalization expenses,providing data support for the implementation effect of the policy.Methods:Taking age,disease type,and other factors as influencing factors,the BP neural network model and the recursive model were used to evaluate the influence of various factors on hospitalization expenses,comparison between the two methods has been done by using SPSS Modeler14.1 and SPSSl9.0 software.Results:The results of the two models are 75%consistent,the effect of zero mark-up drug policy ranks fourth,and it can significantly reduce the hospitalization expenses.Conclusions:The two models fit well,and the results obtained are similar,so the implementation of zero mark-up drug policy can reduce the economic burden of patients to a certain extent.
作者
陈洁
金萍妹
朱洁
华伟
李少品
CHEN Jie;JIN Pingmei;ZHU Jie;HUA Wei;LI Shaopin(Cancer Hospital of University of Chinese Academy of Sciences,No.1,Banshan East Road,Gongshu District,Hangzhou,310022,Zhejiang Province,PRC)
出处
《中国医院》
2019年第12期43-45,共3页
Chinese Hospitals
基金
浙江省医药卫生科技计划(2017KY255)
关键词
药品零差率
住院费用
递归模型
BP神经网络模型
zero mark-up drug policy
hospitalization expenses
recursive model
BP neural network model