摘要
针对现有廊道识别方法存在的不足,提出一种融合多源数据精确识别公交客运廊道的方法,对城市既有公交客运走廊起讫点进行准确识别。首先,通过手机信令数据刻画居民的全方式出行规律,从公交IC和GPS数据中提取居民的现状公交出行链;其次,构建公交客运廊道判别模型,利用需求客流因子和供给客流因子对城市公交客运走廊的客流集聚效应进行量化分析;最后,以融合了多源数据的总客流因子为判断标准,锁定公交客运廊道的最佳起讫点。研究表明:采用多源数据可以实现对乘客出行特征的精准描述,以此得出的廊道判别结果较常规判断方法更贴近乘客实际出行需求,可为城市客运走廊战略规划提供理论支持。
In view of the shortcomings of the existing corridor recognition methods, this paper proposes a method of accurately identifying the public transport corridors by integrating multi-source data, and accurately identifying the starting and ending points of the urban existing public transport corridors. Firstly, describe the whole way travel chain of residents through mobile signaling data, and extract the current bus travel chain of residents from the public transport IC and GPS data. Secondly, construct the discrimination model of public transport corridors, and use the demand passenger flow factor and supply passenger flow factor to quantify the passenger flow agglomeration effect of urban public transport corridors. Finally, total passenger flow factor is the judgment standard to lock the best starting and ending points of the public transport corridor. The case study shows that multi-source data can accurately describe the travel characteristics of passengers, and the corridor discrimination results obtained by multi-sources data are more close to the actual travel demand of passengers than the conventional judgment methods, which can provide theoretical support for the strategic planning of urban passenger corridors.
作者
温馨
陈龙
WEN Xin;CHEN Long(Shanghai Pudong Architectural Design Research Institute Co.,Ltd,Shanghai 201204,China)
出处
《交通与运输》
2020年第1期84-87,共4页
Traffic & Transportation
关键词
公交数据
手机信令
廊道识别
客流因子
集聚效应
Bus data
Mobile signaling
Corridor identification
Passenger flow factor
Agglomeration effect