摘要
针对对抗生成神经网络在人脸轮廓细节恢复上不够完善的问题,利用人脸图像的结构先验信息提出了一种边缘增强的生成对抗网络人脸超分辨率的重建算法.首先,利用人脸图像及其边缘图像的一致性关系设计一种并行网络提取面部和边缘细节特征;然后,通过特征融合网络获得高分辨率的生成图像;最后,利用判别网络判别生成图像的真伪.在人脸图像数据库上进行的人脸超分辨率重建实验结果表明:提出的边缘增强生成对抗网络能够提升面部细节重建能力,主观和客观评价指标均优于现有的人脸超分辨率算法.
Aiming at the imperfection of the countermeasure generation neural network in the restoration of facial contour details,an edge enhancement generation countermeasure network was proposed to enhance the super-resolution reconstruction performance of human face based on the prior structural information of face images.First,a parallel network was designed by using the consistency relationship between face images and their edge images.The network extracted facial and edge detail features,and then high-resolution generated images were obtained by feature fusion network.Finally,the authenticity of generated images was distinguished by discriminant network.Experimental results of face super-resolution reconstruction on face image database by the proposed algorithm show that the proposed edge enhancement generates confrontation network can improve the ability of facial detail reconstruction,and the subjective and objective evaluation indexes are superior to the existing frontier face super-resolution algorithms.
作者
卢涛
陈冲
许若波
张彦铎
LU Tao;CHEN Chong;XU Ruobo;ZHANG Yanduo(School of Computer Science and Engineering,Wuhan Institute of Technology,Wuhan 430205,China;Hubei Key Laboratory of Intelligent Robot,Wuhan Institute of Technology,Wuhan 430205,China)
出处
《华中科技大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2020年第1期87-92,共6页
Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金
国家自然科学基金资助项目(61502354)
湖北省科技专项基金资助项目(2019AAA045)
湖北省自然科学基金资助项目(2015CFB451)
武汉工程大学科研基金资助项目(K201713)
武汉工程大学第十届研究生教育创新基金资助项目(CX2018198)
关键词
人脸幻构
边缘增强网络
生成对抗网络
边缘融合
并行网络
face hallucination
edge enhanced network
generative adversarial network
edge fusion
parallel network