期刊文献+

基于序贯均匀设计的支持向量机超参数的优化方法 被引量:2

Optimization of Hyper-parameters in Support Vector Machine by SNTO Algorithm
下载PDF
导出
摘要 求解支持向量机超参数的优化问题可通过多因素多水平的试验设计来实现。运用序贯均匀设计的方法对高斯径向基核函数参数σ和惩罚因子C进行优化,可以快速且有效地找到最优参数。仿真结果表明,运用序贯均匀设计比直接运用均匀设计效果更佳,且比网格搜索法更具稳健性。 The optimization of hyper-parameters can be solved by a multi-factor and multi-level experimental design.This paper uses the sequential number theoretical optimization(SNTO)algorithm to optimize the Gaussian radial basis kernel function parameterσand the penalty factor C.The SNTO algorithm can find the optimal parameters quickly and efficiently.The simulation results show that the SNTO algorithm has a better performance than the direct uniform design and the grid searching method.
作者 蒋孟灵 李婉玉 JIANG Mengling;LI Wanyu(College of Mathematics,Sichuan University,Chengdu Sichuan 610064,China)
出处 《乐山师范学院学报》 2019年第12期18-23,共6页 Journal of Leshan Normal University
关键词 支持向量机 超参数优化 网格搜索法 均匀设计 序贯均匀设计 Support Vector Machine Hyper-parameters Grid Search Uniform Design SNTO
  • 相关文献

参考文献2

二级参考文献8

  • 1奉国和,朱思铭.基于聚类的大样本支持向量机研究[J].计算机科学,2006,33(4):145-147. 被引量:14
  • 2Sholkopf B,Sung K,Burges C J C,et al.Comparing support vector machine with Gaussian Kernels to radial basis function classifiers[J].IEEE Trans,Signal Processing,1997,45:2758-2765.
  • 3Burges C J C.A tutorial on support vector machines for pattern recognition[J].Data Mining and Knowledge Discovery,1998(2):121-167.
  • 4Vapnik V N.The nature of statistical learning theory[M].New York:Springer,1999.
  • 5Hsu C W.A practical guide to support vector classification[EB/OL].[2009-06-20].http://www.csie.ntu.edu.tw/-cjlin/papers/guide/guide.pdf.
  • 6LIBSVM-A library for support vector machines[EB/OL].[2009-06-07].http://www.csie.ntu.edu.tw/-cjlin/libsvm/.
  • 7王元,方开泰.A NOTE ON UNIFORM DISTRIBUTION AND EXPERIMENTAL DESIGN[J].Chinese Science Bulletin,1981,26(6):485-489. 被引量:39
  • 8LU XUAN ,SUN YIZHOU Department of Mathematical Science, Tsinghua University, Beijing 100084, China..SUPERSATURATED DESIGN WITH MORE THAN TWO LEVELS[J].Chinese Annals of Mathematics,Series B,2001,22(2):183-194. 被引量:6

共引文献438

同被引文献18

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部