期刊文献+

2D organic semiconductors, the future of green nanotechnology 被引量:3

2D organic semiconductors, the future of green nanotechnology
下载PDF
导出
摘要 The discovery of 2D organic semiconductors of atomically thin structures has attracted great attention due to their emerging optical, electronic, optoelectronic and mechatronic properties. Recent progress in such organic nanostructures has opened new opportunities for engineering material properties in many ways, such as, 0D/1D/2D nanoparticles hybridization, strain engineering, atomic doping etc. Moreover, 2D organic nanostructures exhibit a unique feature of bio–functionality and are highly sensitive to bio-analytes. Such peculiar behavior in 2D organics can be utilized to design highly-efficient bio-sensors. Also, a bio-molecular integrated electronic/optoelectronic device with enhanced performance can be attained. Furthermore, the bio-degradable, biocompatible, biometabolizable, non-toxic behaviour and natural origin of organic nanomaterials can address the current ecological concerns of increasing inorganic material based electronic waste. This review highlights the benefits of 2D organic semiconductors. Considering the importance of strategic techniques for growing thin 2D organic layers,this review summarizes progress towards this direction. The possible challenges for long-time stability and future research directions in 2D organic nano electronics/optoelectronics are also discussed. We believe that this review article provides immense research interests in organic 2D nanotechnology for exploiting green technologies in the future. The discovery of 2D organic semiconductors of atomically thin structures has attracted great attention due to their emerging optical, electronic, optoelectronic and mechatronic properties. Recent progress in such organic nanostructures has opened new opportunities for engineering material properties in many ways, such as, 0D/1D/2D nanoparticles hybridization, strain engineering, atomic doping etc. Moreover, 2D organic nanostructures exhibit a unique feature of bio–functionality and are highly sensitive to bio-analytes. Such peculiar behavior in 2D organics can be utilized to design highly-efficient bio-sensors. Also, a bio-molecular integrated electronic/optoelectronic device with enhanced performance can be attained. Furthermore, the bio-degradable, biocompatible, biometabolizable, non-toxic behaviour and natural origin of organic nanomaterials can address the current ecological concerns of increasing inorganic material based electronic waste. This review highlights the benefits of 2D organic semiconductors. Considering the importance of strategic techniques for growing thin 2D organic layers,this review summarizes progress towards this direction. The possible challenges for long-time stability and future research directions in 2D organic nano electronics/optoelectronics are also discussed. We believe that this review article provides immense research interests in organic 2D nanotechnology for exploiting green technologies in the future.
出处 《Nano Materials Science》 CAS 2019年第4期246-259,共14页 纳米材料科学(英文版)
基金 financial support from National Science Foundation China (No. 61775147) Australian Research Council (ARC) No. DP180103238
关键词 2D organic semiconductor Green nanotechnology OTFTs OLEDS Photo-diodes Organic solar cell Optical wave guide 2D organic semiconductor Green nanotechnology OTFTs OLEDs Photo-diodes Organic solar cell Optical wave guide
  • 相关文献

参考文献1

二级参考文献7

共引文献15

同被引文献7

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部