关于平衡对的相对和广义Tate上同调(英文)
Relative and generalized Tate cohomology with respect to balanced pairs
摘要
研究了关于平衡对的相对和广义Tate上同调,得到了关于平衡对的Avramov-Martsinkovsky型正合序列。
The relative and generalized Tate cohomology with respect to balanced pairs are studied.An Avramov-Martsinkovsky type exact sequence is obtained.
作者
张春霞
ZHANG Chunxia(School of Mathematical Sciences,Chongqing Normal University,Chongqing 401331,China)
出处
《中山大学学报(自然科学版)》
CAS
CSCD
北大核心
2020年第1期9-14,共6页
Acta Scientiarum Naturalium Universitatis Sunyatseni
基金
国家自然科学基金(11871125)
重庆市科委项目(cstc 2017jcyjAX0298)
二级参考文献34
-
1Chen X W, Zhang P. Quotient triangulated categories. Manuscripta Math, 2007, 123:16~183.
-
2Christensen L W, l~ankild A, Holm H. On Gorenstein projective, injeetive and fiat dimensions--a functorial description with applications. J Algebra, 2006, 302:231-27"9.
-
3Enochs E E, Jenda O M G. Balanced functors applied to modules. J Algebra, 1985, 92:303 310.
-
4Enochs E E, Jenda O M G. Relative Homological Algebra. Berlin-New York: Walter de Gruyter, 2000 Enochs E E, Jenda O M G, Torrecillas B, et al. Torsion theory relative to Ext. Http://citeseerx.ist.psu.edu/viewdoc/ summary?doi= 10.1.1.31.8694, 1998.
-
5Gao N, Zhang P. Gorenstein derived categories. J Algebra, 2010, 323:2041-2057.
-
6Happel D. On Gorenstein algebras. In: Representation Theory of Finite Groups and Finite-Dimensional Algebras. Progress in Mathematics, vol. 95. Basel: Birkh~iuser, 1991, 389-404.
-
7Hovey M. Cotorsion pairs and model categories. In: Interactions Between Homotopy Theory and Algebra. Contemp Mathematics, vol. 436. Providence, RI: Amer Math Soc, 2007, 277-296.
-
8Huang Z Y, Iyama O. Auslander-type conditions and cotorsion pairs. J Algebra, 2007, 318:93-110.
-
9Iyama O, Yoshino Y. Mutation in triangulated categories and rigid Cohen-Macaulay modules. Invent Math, 2008, 172: 117-168.
-
10Krause H, Solberg O. Applications of cotorsion pairs. J Lond Math Soc, 2003, 68:631-650.