摘要
传统的A*算法易于陷入局部极小,搜索速度较慢,规划的路径有较多折线。文章对传统A*算法进行了两个改进,并将其应用于无人机航迹规划。一是在代价函数中加入无人机的转向代价估计,稳定其飞行方向;二是采用后处理方法对航迹点进行拟合,获得平滑的最短路径曲线。为保证拟合后的路径不会出现较大波动,拟合过程没有使用所有的航迹点,而是在一定的误差允许范围内选取特征点进行拟合。改进算法的有效性通过仿真和实验予以验证。
Traditional A-star algorithm spends much time on searching optimal solution, and is easy to fall into local minima.Moreover, the planned path contains many polygonal lines. In this paper, two improvements are made to the traditional A-star algorithm, and it is applied to the path planning of UAV. One is to add the UAV steering cost estimation to the distance cost function to stabilize its flight direction;the other is to use the post processing method to fit the track points to obtain the smooth shortest path curve. In order to ensure that the fitted path will not fluctuate greatly, the fitting process does not use all the track points, but selects the feature points for fitting within a certain range of allowable error. The effectiveness of the improved algorithm is verified by simulation and experiment.
作者
储泽楠
赵凯
宋倍倍
Chu Zenan;Zhao Kai;Song Beibei(Anyang Institute of Technology,Inspection and Testing Center,Anyang,Henan 455000,China;Anyang Quality and Technical Supervision,Inspection and Testing Center,Anyang,Henan 455000,China)
出处
《计算机时代》
2020年第2期54-57,66,共5页
Computer Era
基金
河南省科技攻关项目(182102210197)
河南省教育厅重点研究项目(18A520012)
关键词
A*算法
曲线拟合
无人机
后处理
A-star algorithm
curve fitting
unmanned aerial vehicle
post processing method