期刊文献+

基于离散化和LSTM神经网络的股票指数趋势预测研究

Research on Stock Index Trend Prediction Based on Discretization and LSTM
下载PDF
导出
摘要 股票市场预测一直是一项受到各个领域研究者关注且极具挑战性的任务。针对当前使用股票技术指标预测股市精度不高的问题,提出将连续型数值的股票技术指标特征离散化为一系列0、1特征,同时加入宏观经济指标的方法应用于股票指数预测。实验以沪深300成分指数为源数据,对沪深300成分指数的涨、跌进行预测,实验结果显示,离散化技术以及宏观经济指标均对股指趋势预测的精度有所提升。 Predicting stock market has attracted many researchers in multiple fields and challenging task.Aiming at the problem that current stock technical indicators is used to predict the accuracy of the stock market not well,proposes to discretize the continuous numerical stock index characteristics into a series of 0 and 1 features,and addition of macroeconomic variables to the stock index forecast.The experiment uses the CSI 300 market index as the source data to predict the rise and fall of the stock indices.The experimental results show that the discreti⁃zation technology and macroeconomic variables have improved the accuracy of the stock index trend forecast.
作者 吉睿 JI Rui(College of Computer Science,Sichuan University,Chengdu 610065)
出处 《现代计算机》 2019年第36期23-26,共4页 Modern Computer
关键词 离散化 LSTM 趋势预测 Discretization LSTM Trend Prediction
  • 相关文献

参考文献2

二级参考文献12

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部