摘要
针对时间性反走样算法使用启发式方法导致的模糊、闪烁和子像素细节丢失的问题,提出一种自适应时间性反走样算法。对于历史颜色失效的像素,使用超采样来代替传统时间性反走样算法中的启发式方法,并通过层次化的分割掩码和几何着色器在屏幕空间上剔除不需要超采样的三角形,以执行稀疏光栅化来加速算法。实验结果表明,自适应时间性反走样算法能有效解决传统时间性反走样算法中存在的问题得到较好的反走样效果。
Aiming at the problems of blur,flicker and subpixel detail lost caused by using heuristic method in the Temporal Anti-aliasing(TAA)algo⁃rithm,an adaptive temporal anti-aliasing algorithm is proposed.The algorithm uses super sampling instead of the traditional TAA heuristic method to process the pixels of the historical color failure,and uses the hierarchical segmentation mask and geometry shader to reject the triangle that does not need to be oversampled on the screen space to perform sparse rasterization to accelerate the algorithm.The experi⁃mental results show that the adaptive temporal anti-aliasing algorithm can effectively solve the problems existing in the traditional temporal anti-aliasing algorithm and get better anti-aliasing effect.
作者
陈文倩
CHEN Wen-qian(College of Computer Science,Sichuan University,Chengdu 610065)
出处
《现代计算机》
2020年第3期39-43,共5页
Modern Computer
关键词
时间性反走样
超采样
层次化的分割掩码
稀疏光栅化
Temporal Anti-aliasing
Super Sampling
Hierarchical Segmentation Mask
Sparse Rasterization