摘要
设C[X]为复数域上的一元多项式代数,I为n+1次Dickson多项式E_(n+1)(X)生成的C[X]的理想,C[X]/I为商代数.证明了商代数C[X]/I既是Frobenius代数,又是Frobenius余代数.进一步,该商代数在恒等对极下还是双-Frobenius代数.
Let C[X]be a polynomial algebra with one variable over the field of complex numbers,I the ideal of C[X]generated by the n+1-th Dickson polynomial En+1(X)and C[X]/I the quotient algebra of C[X]modulo the ideal I.It is shown that the quotient algebra C[X]/I is both a Frobenius algebra and a Frobenius coalgebra.Moreover,it is a bi-Frobenius algebra whose antipode is given by the identity map.
作者
王志华
裔小蒙
李金
宣静怡
WANG Zhi-hua;YI Xiao-ineng;LI Jin;XUAN Jing-yi(Department of Mathematical Sciences,Taizhou College,Taizhou 225300,China)
出处
《数学的实践与认识》
北大核心
2019年第24期225-230,共6页
Mathematics in Practice and Theory
基金
国家自然科学基金(11871063)
江苏省大学生创新创业训练计划项目(201812917001Z)
江苏高校“青蓝工程”资助
江苏省自然科学基金项目(BK20170589)