期刊文献+

高温驱动氧化锰刻蚀制备纳米氧化锰-多孔石墨烯及其锂空气电池性能研究 被引量:3

Preparations of Nanostructural Mn O-Porous Graphene Hybrid Material by Thermally-Driven Etching of MnO for Lithium-Air Batteries
下载PDF
导出
摘要 本文通过简单的电荷吸附制备了高分散的氧化石墨烯含锰化合物(Mn-GO),利用高温驱动下氧化锰的生长以及热运动同时实现了GO的还原、刻蚀和纳米氧化锰的负载,即成功构筑了纳米氧化锰-多孔石墨烯复合材料(MnO-PGNSs).对影响GO分散性的Mn2+的添加量、影响GO层数的分散液浓度以及影响MnO热运动的烧结条件进行了详细的考察.研究发现,当Mn-GO同时满足优异的分散性、适合的片层厚度和烧结条件(>800oC,>2h),才能在GNSs表面刻蚀成孔制备得到MnO-PGNSs.本文进一步将MnO-PGNSs作为锂空气电池正极材料,结果表明在50 mA·g-1的电流密度下深度放电后容量达到5100 mA h·g-1,相比于GNSs和PGNSs,MnO-PGNSs具有更高的比容量.锂空气电池性能的提高得益于GNSs表面的多孔结构和MnO优异的催化活性. In order to emphasize improving the surface morphology of graphene(GNSs)as a designed concept,the magnesium oxide-porous-graphene(MnO-PGNSs)hybride material was synthesized with a simple site-localized Mn2+on graphene oxide(Mn-GO)by charge adsorption,and then driving by high-temperature calcination,growing MnO nanoparticles and etching GNSs.The key factors that influenced the etch hole formation are analyzed with the focuses on the dispersion of Mn-GO,layer number of GO and calcination temperature.It was shown that the Mn O-PGNSs,when used as a lithium-air battery cathode,exhibited high reversible capacity as compared with GNSs and PGNs,and delivered the storage capacity as high as 5100 m Ah·g-1 at 50 m A·g-1.
作者 杨娟 郎俊伟 张鹏 刘宝 YANG Juan;LANG Jun-wei;ZHANG Peng;LIU Bao(Laboratory of Clean Energy Chemistry and Materials,Lanzhou Institute of Chemical Physics,Chinese Academy of Science,Lanzhou 730000)
出处 《电化学》 CAS CSCD 北大核心 2019年第5期621-630,共10页 Journal of Electrochemistry
基金 甘肃省省青年科技基金(No.1606RJYA258)资助
关键词 氧化石墨烯 氧化锰 氧化锰-多孔石墨烯复合材料 锂空气电池 graphene oxide magnesium oxide magnesium oxide-porous-graphene lithium-air battery
  • 相关文献

参考文献2

二级参考文献25

  • 1Pang S P, Tsao H N, Feng X L, et al. Patterned graphene electrodes from solution processed graphite oxide films for organic field-effect transistors. Adv Mater, 2009, 21:3488-3491.
  • 2Su Q, Pang S P, Alijani V, et al. Composites of graphene with large aromatic molecules. Adv Mater, 2009, 21: 3191-3195.
  • 3Wang X, Zhi L J, Tsao N, et al. Transparent carbon films as elec- trodes in organic solar cells. Angew Chem Int Ed, 2008, 47: 2990-2992.
  • 4Liang Y Y, Wu D Q, Feng X L, et al. Dispersion of graphene sheets in organic solvent supported by ionic interactions. Adv Mater, 2009, 21:1679-1683.
  • 5Stoller M D, Park S, Zhu Y W, et al. Graphene-based ultracapacitors. Nano Lett, 2008, 8:3498-3502.
  • 6Dikin D A, Stankovich S, Zimney E J, et al. Preparation and charact- erization of graphene oxide paper. Nature, 2007, 448:457-760.
  • 7Li D, M011er M B, Gilje S, et al. Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol, 2008, 3:101-105.
  • 8Kim K S, Zhao Y, Jang H, et al. Large-scale pattern growth of gra-phene films for stretchable transparent electrodes. Nature, 2009, 457: 706-710.
  • 9Feng L, Zhang Y N, Xi J M, et al. Petal effect: A superhydrophobic state with high adhesive force. Langmuir, 2008, 24:4114-4119.
  • 10Nosonovsky M. Multiscale roughness and stability of superhyd- rophobic biomimetic interfaces. Langmuir, 2007, 23: 3157-3161.

共引文献14

同被引文献6

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部