期刊文献+

基于网络可视图的室内人体状态检测研究

Research on indoor human body state detection based on visibility graph
下载PDF
导出
摘要 随着无线局域网的普及,利用无线信号对室内人员活动状态的研究越来越多,如进行无源被动的人体朝向感知等。本文提出了一种结合无线信道状态信息(CSI)和可视图(VG)复杂网络技术的室内人体朝向检测方法,首先以无线局域网中的信道状态幅度和相位信息构建时间序列数据网络,然后基于提取的网络参数和原始统计属性作为融合特征,再通过机器学习算法进行人体朝向的分类检测。为验证算法效果,本文建立了信道状态幅度和位相信息采集平台,综合多对天线数据进行了教室和办公室2种环境下的人体4朝向和8朝向检测,还讨论了K近邻(KNN)、朴素贝叶斯(NB)和支持向量机(SVM)等分类方法的时间复杂度对比。实验结果表明,本文所提出的方法和实验方案具有较高的室内人体朝向检测精度,8朝向的最佳检测精度能达到98.66%。 Nowadays many researches have been focusing on the monitoring of indoor people activity status using wireless signals,such as passive orientation detection.This paper proposes a human body orientation detection method which combines wireless channel state information(CSI)and visual graph(VG)complex network technique.Based on the time series data network method,the channel state amplitude and information in the wireless local area network are used as the original physical quantity to construct the complex network and further extract the network features,then the machine learning algorithm is used to perform classification of the human body orientation.In order to verify the effect of the algorithm,firstly the channel state amplitude and phase information collection platform are established,then the integrated pairs of antenna data are used to detect the 4-direction and 8-direction of the human body in both classroom and office environments.Meanwhile,classification methods such as K-nearest neighbor(KNN),naive Bayes(NB)and support vector machine(SVM)are also discussed and compared on the time complexity aspects.The experimental results show that the proposed method and experimental scheme have high indoor body orientation detection accuracy,and the best detection of 8-direction can reach 98.66%.
作者 吴哲夫 樊坤鹏 陈滨 刘恺 方路平 Wu Zhefu;Fan Kunpeng;Chen Bin;Liu Kai;Fang Luping(College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023;School of Design, Zhejiang University of Technology, Hangzhou 310023)
出处 《高技术通讯》 EI CAS 北大核心 2020年第1期23-31,共9页 Chinese High Technology Letters
基金 浙江省自然科学基金(LY18F010025,LY14F050004,LY13F010011)资助项目
关键词 复杂网络 网络构建 人体状态 机器学习 可视图(VG) complex network network construction human body state machine learning visibility graph(VG)
  • 相关文献

参考文献2

二级参考文献17

  • 1Alsheikh M A, Selim A, Niyato D, et al. Deep activity recognition models with triaxial accelerometers. Computer Science, 2015, arxiv: 1511.04664.
  • 2Roggen D, Cuspinera L P, Pombo G, et al. Limited- memory warping LCSS for real-time low-power pattern rec- ognition in wireless nodes. In: Proceedings of the 12th European Conference Wireless Sensor Networks (EWSN), Porto, Portugal, 2015. 151-167.
  • 3Ordonez F J, Englebienne G, De Toledo P, et al. In- home activity recognition: Bayesian inference for hidden Markov models. IEEE Pervasive Computing, 2014, 13 (3) :67-75.
  • 4Cao H, Nguyen M N, Phua C, et al. An integrated framework for human activity classification. Ubicomp,2012:331-340.
  • 5Bulling A, Blauke U, Schiele B. A tutorial on human ac- tivity recognition using body-worn inertial sensors. Acre Computing Surveys, 2014, 46 ( 3 ) :57-76.
  • 6P18tz T, Hammerla N Y, Olivier P. Feature learning for activity recognition in ubiquitous computing. In: Proceed- ings of the International Joint Conference on Artificial In- telligence, Barcelona, Spain, 2011. 1729-1734.
  • 7Yang J B, Nguyen M N, San P P, et al. Deep convolu- tional neural networks on multichannel time series for hu- man activity recognition. In: Proceedings of the 24th In- ternational Joint Conference on Artificial Intelligence. Buenos Aires, Argentina, 2015. 3995-4001.
  • 8Marmanis D, Datcu M, Esch T, et al. Deep learning earth observation classification using imageNet pretrained networks. IEEE Geoscience & Remote Sensing Letters, 2016, 13(1) :105-109.
  • 9Simonyan K, Zisserman A. Very deep convolutional net- works for large-scale image recognition, arxiv preprint, arxiv: 1409. 1556, 2014.
  • 10Donahue J, Jia Y, Vinyals O, et al. DeCAF: A deep convolutional activation feature for generic visual recogni- tion. Computer Science, 2013, 50(1): 815-830.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部