期刊文献+

基于还原氧化石墨烯的干涉型光纤湿度传感器 被引量:13

Reduced Graphene Oxide-Based Interferometric Fiber-Optic Humidity Sensor
原文传递
导出
摘要 提出了一种利用微米光纤构成的Mach-Zehnder干涉光路结构,并利用热还原方法将光纤上覆盖的氧化石墨烯(GO)膜层转变为还原氧化石墨烯(RGO)膜层,实现了以干涉峰值对应波长为传感参量的湿度传感。传感器在相对湿度(RH)为45%~95%范围内达到的最大平均灵敏度为0.2768 nm/%RH。传感器对湿度变化的响应及恢复时间分别为6 s及30 s。研究显示,传感器对湿度及温度的响应具有不同的特点。传感器在湿度传感中具有良好的时间稳定性及较好的可恢复性。这种微米光纤干涉结构以及在该型光纤上覆盖RGO膜层的工艺方法为制备干涉型石墨烯光纤传感器提供了新的思路。 This study presents a microfiber-based Mach-Zehnder interferometric optical structure. The fiber-optic humidity sensing, which employs the wavelength corresponding to the interference peak as the sensing parameter, is realized using a thermal reduction method. The thermal reduction method changes graphene oxide(GO) film, which precovers the fiber, into a reduced graphene oxide(RGO) film. The sensor can achieve a maximum average sensitivity of 0.2768 nm/%RH in relative humidity range of 45%-95%. The response and recovery time of the sensor in humidity sensing are 6 s and 30 s, respectively. The humidity response and temperature response of the sensor exhibit different characteristics, and the sensor has good time stability and recoverability in humidity sensing. This study provides a novel interference-type graphene-based fiber-optic sensor fabrication method using the microfiber-based interference structure and process engineering that changes GO into RGO.
作者 柯伟铭 李振华 周智翔 林艳梅 肖毅 Ke Weiming;Li zhenhua;Zhou Zhixiang;Lin Yanm ei;Xiao Yi(Department of Optoelectronic Engineering,Jinan Universityy Guangzhou,Guangdong 510632,China)
出处 《光学学报》 EI CAS CSCD 北大核心 2019年第12期66-75,共10页 Acta Optica Sinica
基金 国家自然科学基金(61675092) 广东省自然科学基金(2017A030313359) 广州市科技计划(201803020023) 暨南大学大学生创新创业训练计划(201810559003)
关键词 光纤光学 纳米材料 光纤湿度传感器 还原氧化石墨烯 微米光纤 fiber optics nano materials fiber-optic humidity sensor reduced graphene oxide microfiber
  • 相关文献

参考文献1

二级参考文献42

  • 1江沛凡,陈哲,曾应新,刘林和,李丰丽.侧边抛磨光纤的光传输特性研究[J].半导体光电,2006,27(5):578-581. 被引量:26
  • 2KS Novoselov, A K Geim, S V Morozov, et al" Electric field effect in atomically thin carbon films [J]. Science, 2004,306(5696):666-669.
  • 3K S Novoselov, Z Jiang, Y Zhang, et al.. Room-temperature Quantum Hall effect in graphene [J]. Science, 2007, 315(5817): 1379.
  • 4Y B Zhang, Y W Tan, H L Stormer, et al.. Experimental observation of the Quantum Hall effect and Berry's phase in graphene [J].Nature, 2005, 438(7065): 201-204.
  • 5K S Novoselov, E Mccann, S V Morozov, et al" Unconventional Quantum Hall effect and Berry's phase of 2p in bilayer graphene [J].Nature Physics, 2006, 2(3): 177-180.
  • 6Z Jiang, Y Zhang, H L Stormer, et al.. Quantum Hall states near the charge- neutral Dirac point in graphene [J]. Phys Rev Lett,2007,99(10): 106802.
  • 7K S Novoselov, A K Geim, S V Morozov, et al" Two-dimensional gas of massless Dirac fermions in graphene [J]. Nature, 2005, 438(7065): 197-200.
  • 8S V Morozov, K S Novoselov, M I Katsnelson, et al.. Giant intrinsic carrier mobilities in graphene and its bilayer [J]. Phys Rev Lett,2008,100(1): 016602.
  • 9K I Bolotin, K J Sikes, Z Jiang, et al.. Ultrahigh electron mobility in suspended graphene [J]. Solid State Commun, 2008,146(9-10):351-355.
  • 10S A Mikhailov, K Ziegler. New electromagnetic mode in graphene [J]. Phys Rev Lett, 2007, 99(1): 016803.

共引文献13

同被引文献104

引证文献13

二级引证文献57

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部