期刊文献+

A genus-4 topological recursion relation for Gromov-Witten invariants

A genus-4 topological recursion relation for Gromov-Witten invariants
原文传递
导出
摘要 In this paper,we give a new genus-4 topological recursion relation for Gromov-Witten invariants of compact symplectic manifolds via Pixton’s relations on the moduli space of curves.As an application,we prove that Pixton’s relations imply a known topological recursion relation on Mg,1 for genus g≤4. In this paper,we give a new genus-4 topological recursion relation for Gromov-Witten invariants of compact symplectic manifolds via Pixton’s relations on the moduli space of curves.As an application,we prove that Pixton’s relations imply a known topological recursion relation on Mg,1 for genus g≤4.
作者 Xin Wang
出处 《Science China Mathematics》 SCIE CSCD 2020年第1期101-112,共12页 中国科学:数学(英文版)
基金 supported by National Natural Science Foundation of China(Grant No11601279) the Fundamental Research Funds of Shandong University
关键词 topological recursion relation moduli space of curves Gromov-Witten invariants topological recursion relation moduli space of curves Gromov-Witten invariants
  • 相关文献

参考文献2

二级参考文献27

  • 1Arbarello E, Cornalba M. Calculating cohomology groups of moduli spaces of curves via algebraic geometry. Inst Hautes Trtudes Sci Publ Math, 1998, 88:97- 127.
  • 2Belorousski P, Pandharipande R. A descendent relation in genus 2. Ann Scuola Norm Sup Pisa C1 Sci, 2000, 29: 171- 191.
  • 3Bergstrom a. Cohomology of moduli spaces of curves of genus three via point counts. J Reine Angew Math, 2008, 622: 155- 187.
  • 4Dubrovin B, Zhang Y. Bihamiltonian hierarchies in 2D topological field theory at one-loop approximation. Comm Math Phys, 1998, 198:311 -361.
  • 5Eguchi T, Hori K, Xiong C. Quantum cohomology and virasoro algebra. Phys Lett Ser B, 1997, 402:71-80.
  • 6Faber C, Pandharipande R. Relative maps and tautological classes. J Eur Math Soc, 2005, 7:13-49.
  • 7Gathmann A. Topological recursion relations and Gromov-Witten invariants in higher genus. ArXiv:math/0305361, 2003.
  • 8Getzler E. Intersection theory on M1,4 and elliptic Gromov-Witten Invariants. J Amer Math Soc, 1997, 10:973- 998.
  • 9Getzler E. Topological recursion relations in genus 2. In: Integrable systems and algebraic geometry. River Edge: World Sci Publ, 1998, 73-106.
  • 10Givental A. Gromov-Witten invariants and quantization of quadratic hamiltonians. Mosc Math J, 2001, 1:551-568.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部