期刊文献+

Comparison and Extremal Results on Three Eccentricity-based Invariants of Graphs

Comparison and Extremal Results on Three Eccentricity-based Invariants of Graphs
原文传递
导出
摘要 The first and second Zagreb eccentricity indices of graph G are defined as:E1(G)=∑(vi)∈V(G)εG(vi)~2,E2(G)=∑(vivj)∈E(G)εG(vi)εG(vj)whereεG(vi)denotes the eccentricity of vertex vi in G.The eccentric complexity C(ec)(G)of G is the number of different eccentricities of vertices in G.In this paper we present some results on the comparison between E1(G)/n and E2(G)/m for any connected graphs G of order n with m edges,including general graphs and the graphs with given C(ec).Moreover,a Nordhaus-Gaddum type result C(ec)(G)+C(ec)(■)is determined with extremal graphs at which the upper and lower bounds are attained respectively. The first and second Zagreb eccentricity indices of graph G are defined as:E1(G)=∑vi∈V(G)εG(vi)2,E2(G)=∑vivj∈E(G)εG(vi)εG(vj) where εG(vi) denotes the eccentricity of vertex vi in G.The eccentric complexity Cec(G) of G is the number of different eccentricities of vertices in G.In this paper we present some results on the comparison between E1(G)/n and E2(G)/m for any connected graphs G of order n with m edges,including general graphs and the graphs with given Cec.Moreover,a Nordhaus-Gaddum type result Cec(G)+Cec(■) is determined with extremal graphs at which the upper and lower bounds are attained respectively.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2020年第1期40-54,共15页 数学学报(英文版)
基金 Supported by NNSF of China(Grant No.11671202) Sungkyun research fund,Sungkyunkwan University,2017 National Research Foundation funded by the Korean government(Grant No.2017R1D1A1B03028642)
关键词 Eccentricity(of vertex) first Zagreb eccentricity index second Zagreb eccentricity index eccentric complexity diameter Eccentricity(of vertex) first Zagreb eccentricity index second Zagreb eccentricity index eccentric complexity diameter
  • 相关文献

参考文献2

二级参考文献17

  • 1Akiyama, J., Ando, J. K., Avis, D.: Miscellaneous Properties of Equi-Eccentric Graphs. In: Convexity and graph theory (Jerusalem, 1981), North-Holland Math. Stud. 87, 13-23, North-Holland, Amsterdam, 1984.
  • 2Buckley, F., Miller, Z., Slater, P. J.: On graphs containing a given graph as center. J. Graph Theory, 5, 427 434 (1981).
  • 3Janakiraman, T. N.: On self-centered graphs. J. Ramanujan Math. Soc., T, 83-92 (1992).
  • 4Negami, S., Xu, G. H.: Locally geodesic cycles in 2-self-centered graphs. Discrete Math., 58,263-268 (1986).
  • 5Buckley, F.: Self-centered graphs. Ann. New York Acad. Sci., 576, 71-78 (1989).
  • 6Lee, S.-M., Wang, P.-C.: On groups of automorphisms of self-centered graphs. Bull. Math. Soc. Sci. Math. Roumanie (g. S.), 34(82), 311-316 (1990).
  • 7Janakiraman, T. N., Bhanumathi, M., Muthammai, S.: Self-centered super graph of a graph and center number of a graph. Ars Combin., 87, 271-290 (2008).
  • 8Chartrand, G., Gu, W., Schultz, M., et al.: Eccentric graphs. Networks, 34, 115-121 (1999).
  • 9Gimbert, J., L6pez, N., Miller, M., et al.: Characterization of eccentric digraphs. Discrete Math., 306, 210-219 (2006).
  • 10Walikar, H. B., Narayankar, K. P.: Almost self-centered ASC(R)-graphs. Submitted.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部