期刊文献+

基于BP神经网络的时栅时序预测测量研究

Study of Time Series Predictive Measurement of Time Grating Based on BP Neural Network
下载PDF
导出
摘要 为了将时栅应用于全闭环数控系统,需完成时栅信号由时域到空域的转换。通过BP神经网络预测模型找出实测数据中的隐含规律进而建立起样本和未来实测数据的映射关系,预测出下一个周期内时栅的测量角度值,实现时栅绝对式角度值与光栅数控系统所需的增量式连续脉冲的转换;为了保证测量精度,利用当前测量值对上一次的预测误差进行校正。实验表明:基于BP神经网络预测算法的时栅系统可以实现时域信号向空域信号的转换,且误差精度为±2″,满足了数控系统对测量精度的要求。 In order to apply the time grating to the full-closed CNC system,it is necessary to complete the conversion of the time grating signal from time domain to space domain.BP neural network prediction model was used to find out the implicit law in the measured data to establish the mapping relationship between historical samples and future measured data,the measured anglevalue of the next measurement period of the time grating was predicted,and conversion between absolute angle of time grid and incremental continuous pulse required by optical grating CNC system was realized.In order to ensure the measurement accuracy,the current measurement was used to correct the last prediction error.The experiment shows that the time grating system based on BP neural network prediction algorithm can realize the conversion from time domain signal to space domain signal,and the error accuracy is±2″,satisfying the measurement accuracy requirements of CNC system.
作者 郑方燕 陈鹏霖 石海峰 颜路 ZHENG Fang-yan;CHEN Peng-lin;SHI Hai-feng;YAN Lu(Engineering Research Center of Mechanical Testing Technology and Equipment,Ministry of Education,Chongqing University of Technology,Chongqing 400054,China)
出处 《仪表技术与传感器》 CSCD 北大核心 2020年第1期96-99,共4页 Instrument Technique and Sensor
基金 国家自然科学基金项目(51605063) 重庆市科委项目(cstc2017jcyjAX0122) 重庆理工大学研究生创新基金项目(YCX2018232)
关键词 时栅 数控系统 时空转换 预测测量 BP神经网络 误差修正 time grating CNC system time-space transformation predictive measurement BP neural network error correction
  • 相关文献

参考文献4

二级参考文献23

  • 1李书臣,徐心和,李平.预测控制最新算法综述[J].系统仿真学报,2004,16(6):1314-1319. 被引量:27
  • 2许实章.电机学(下册)[M].北京机械工业出版社,1982..
  • 3何书元.应用时间序列分析[M].北京:北京大学出版社,2007.
  • 4AMBRA C, OLDKNOW K, MIGLIORINI G, et al. The design of a high performance modular CNC system archi- tecture[ J]. Intelligent Control, 2002: 290-296.
  • 5TAN K K, ZHOU H X, LEE T H. New interpolation method for quadrature encoder signals [ J ]. IEEE Trans- actions on Instrumentation and Measurement, 2002, 51 (5) : 1073-1079.
  • 6LIU X K, PENG D L. Research on a novel high-preci- sion intelligent displacement sensor[J]. Solid State Phe- nomena: Mechatronic Systems and Materials, 2006, 113 : 435-441.
  • 7QIN S J, BADGWELL T A. A survey of industrial model predictive control technology [ J ]. Control Engineering Practice, 2003,11:733-764.
  • 8LIU X K, FE Y I, PENG D, et al. Predictive measure- ment method for time grating displacement sensor [ J ]. Measurement Technology and Intelligent Instruments Ⅷ: Key Engineering Materials, 2008, 381-382:403-406.
  • 9FINKELSTEIN L. Widely, strongly and weakly defined measurement [ J]. Measurement, 2003, 34:39-48.
  • 10BECKWITH T G, MARANGONI R D, I,IENHARD V J H. Mechanical measurements[ M]. 5th ed. Pearson Ed- ucation, Inc., USA, 2004:3-5.

共引文献105

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部