期刊文献+

基于增强高阶非凸全变分模型的图像去噪算法 被引量:2

Image denoising algorithm based on boosting high order non-convex total variation model
下载PDF
导出
摘要 为了在缓解阶梯效应的同时更好地保留去噪后图像的细节信息,提出一种基于增强高阶非凸全变分(higher order non-convex total variation,HONTV)模型的图像去噪算法。该算法将每一次去噪后的图像和原始图像取平均作为增强HONTV模型下一次循环的输入并更新参数,然后采用增广拉格朗日乘子法和交替方向乘子法进行循环求解,经过多次迭代,最终得到的去噪图像包含较多的细节信息。在基于全变分的图像去噪方法中,对添加不同标准差大小的高斯白噪声的测试图像和视频进行实验。实验结果表明,所提算法在视觉性能和客观评价指标方面均优于对比算法。 In order to ease the stair casing artifacts and better preserve the details of the image after denoising,this paper proposes an image denoising algorithm based on the boosting high order non-convex total variation(HONTV)model.By averaging each denoised image and the original image as the input of the next cycle of the boosting HONTV model and updating the parameters,the augmented Lagrangian method and the alternating direction method of multipliers are used to solve the model.After multiple iterations,the resulting denoised image contains more detail information.In the image denoising method based on total variation,the experimental results show that the proposed algorithm outperforms the comparison algorithm in terms of visual performance and objective evaluation index for adding Gaussian white noise test images and videos with different standard deviations.
作者 刘佩 贾建 陈莉 安影 LIU Pei;JIA Jian;CHEN Li;AN Ying(School of Information and Technology,Northwest University,Xi’an 710127,China;School of Mathematics,Northwest University,Xi’an 710127,China)
出处 《系统工程与电子技术》 EI CSCD 北大核心 2020年第3期557-567,共11页 Systems Engineering and Electronics
基金 西北大学紫藤国际合作计划项目(389040008)资助课题
关键词 高阶非凸全变分 图像去噪 增广拉格朗日乘子法 交替方向乘子法 high order non-convex total variation(HONTV) image denoising augmented Lagrangian method alternating direction method of multipliers
  • 相关文献

同被引文献28

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部