摘要
针对十字路口下车辆密度过大时造成的车联网拥塞问题,提出基于K-means聚类的车联网拥塞控制方法。在IEEE802.11P协议模型的基础上,引入处理高并发数据的拥塞控制模块,利用网络层分簇时V2V相对距离值作为K-means聚类算法帧分类的相似度区分值,与VANET的网络标准参数建立拥塞控制方法(KCC),避免同一类车辆节点交互不同步和高密度节点情况下网络拥塞概率过高等问题。仿真结果表明,KCC与CSMA/CA相比有较好的平均时延、平均吞吐量、丢包率、冲突概率等性能。
Aiming at the congestion problem of vehicles caused by excessive vehicle density at intersections,a vehicle-based congestion control method based on K-means clustering was proposed.Based on the IEEE802.11P protocol model,a congestion control module for processing high concurrent data was introduced.The V2V relative distance value was used as the similarity value of the K-means algorithm frame classification when the network layer was clustered,and congestion was established with the VANET network standard parameters.The control method(KCC)avoided problems such as the unsynchronized interaction of the same type of vehicle nodes and the high probability of network congestion in the case of high-density nodes.The simulation results show that KCC has better average delay,average throughput,packet loss rate and collision probability than CSMA/CA.
作者
李国钦
孙友伟
柴永平
LI Guo-qin;SUN You-wei;CHAI Yong-ping(School of Communication and Information Engineering,Xi’an University of Posts and Telecommunications,Xi’an 710121,China)
出处
《计算机工程与设计》
北大核心
2020年第2期334-338,共5页
Computer Engineering and Design
关键词
车联网
拥塞控制
城市交通
信息采集
冲突概率
VANET
congestion control
city traffic
information collection
conflict probability