期刊文献+

基于交互多模型的粒子滤波导引头机动目标检测技术研究 被引量:3

Research on Maneuvering Target Tracking Technology for Seeker Based on Particle Filter of Interacting Multiple Model
下载PDF
导出
摘要 随着武器装备技术的发展,有人机、无人机等空中飞行器的机动能力大幅提升。目标机动时,由于目标过载未知,其与导引头预置模型间的匹配性下降,通常会导致导引头跟踪性能下降,甚至丢失目标。面对传统导引头目标跟踪算法对大机动目标适应性较差问题,本文提出了一种基于距离-多普勒二维谱粒子滤波的交互多模型算法,通过交互多模型引入多模态,实时进行机动参数辨识,提高模型匹配性,结合粒子滤波弱小信号探测方面的优势提升导引头对大机动目标的适应性。仿真结果表明:基于交互多模型的粒子滤波算法明显改善了雷达导引头对大机动目标的检测跟踪性能,改善了传统的粒子滤波算法对大过载机动的适应性,具有较好工程应用价值。 With the development of weapon equipment technology,the maneuverability of aerial vehicles such as manned aircraft and UAV has been greatly improved.When the target is maneuvered,the matching between the target and the preset model of the seeker is degraded due to the unknown target overload,which usually leads to the degradation of the seeker tracking performance and even the loss of the target.Faced with the problem that the traditional seeker target tracking algorithm has poor adaptability to large maneuvering targets,this paper proposes an interacting multiple model algorithm based on particle-filtering of distance-Doppler two-dimensional spectrum.Led the multi-modality into the interacting multiple model,the maneuvering parameter identification is improved in real time to improve the model match-ing,and the advantage of the small-signal detection of the particle filter technology is combined to improve the adaptability of the seeker to the high maneuvering targets.Simulation results validate that the proposed PF algorithm based on interacting multiple model improves detection and tracking performance of the radar seeker to high maneuvering targets significantly.In addition,it improves the adaptability of PF algorithm to mobile overload and has more important engineering application value.
作者 王铮 韩宝玲 Wang Zheng;Han Baoling(Beijing Institute of Technology,Beijing 100081,China)
机构地区 北京理工大学
出处 《航空兵器》 CSCD 北大核心 2020年第1期26-32,共7页 Aero Weaponry
关键词 交互多模型 粒子滤波 雷达导引头 机动目标 检测跟踪 interacting multiple model particle filter radar seeker maneuvering target
  • 相关文献

参考文献6

二级参考文献37

  • 1杨争斌,郭福成,周一宇.迭代IMM机动目标被动单站跟踪算法[J].宇航学报,2008,29(1):304-310. 被引量:5
  • 2邓小龙,谢剑英,杨煜普.基于交互式多模型的粒子滤波算法[J].系统仿真学报,2005,17(10):2360-2362. 被引量:19
  • 3罗笑冰,王宏强,黎湘.模型转移概率自适应的交互式多模型跟踪算法[J].电子与信息学报,2005,27(10):1539-1541. 被引量:22
  • 4Blackman S S and Popoli R.Design and Analysis of Modern Tracking System[M].Norwood MA:Artech House,1999:221-252.
  • 5Blom H A P and Bloem E A.Exact Bayesian and particle filtering of stochastic hybrid systems[J].IEEE Transactions on Aerospace and Electronic Systems,2007,43(1):55-70.
  • 6Liang Yan,Wang Zeng-fu,and Cheng Yong-mei,et al..Estimation of Markov jump systems with mode observation one-step lagged to state measurement[C].The 10th International Conference on Information Fusion,Québec City,Canada,9-12 July 2007:1-6.
  • 7Mcginnity S and Irwin G W.Multiple model bootstrap filter for maneuvering target tracking[J].IEEE Transactions on Aerospace and Electronic Systems,2000,36(3):1006-1012.Driessen H and Boers Y.Efficient particle filter for jump Markov nonlinear systems[J].IEE Proceedings.Radar,Sonar and Navigation,2005,152(5):323-326.
  • 8Yacine M and Mohand S D.Genetic algorithm combined to IMM approach for tracking highly maneuvering targets[J].IAENG International Journal of Computer Science,2008,35(1):41-46.
  • 9Driessen H and Boers Y.Efficient particle filter for jump Markov nonlinear systems[J].IEE Proceedings.Radar,Sonar and Navigation,2005,152(5):323-326.
  • 10Doucet A,Gordon N,and Krishnamurthy V.Particle filters for state estimation of jump Markov linear systems[J].IEEE Transactions on Signal Processing,2001,49(3):613-624.

共引文献22

同被引文献21

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部