期刊文献+

交换半环上半线性空间的线性变换 被引量:1

Linear Transformations of Semilinear Spaces over Commutative Semirings
下载PDF
导出
摘要 介绍半线性空间上线性变换、幂等变换、可逆变换的概念,定义线性变换的运算,讨论幂等变换、可逆变换的一些基本性质,并得到线性变换的值域与核的一些关系.特别地,证明在单变换下,值域的基的原像构成半线性空间的基. This paper mainly introduces the concepts of a linear transformation,an idempotent transformation and an invertible transformation,and defines the operations of transformations in semilinear spaces over commutative semirings.It then discusses some properties of the idempotent transformations and the invertible transformations,respectively.Some relationships between images and kernels of the linear transformation are showed.In particular,it proves that the inverses of vectors of a basis in images form a basis of a semilinear space under the condition that the linear transformation is injective.
作者 张兴均 吴莉 王学平 ZHANG Xingjun;WU Li;WANG Xueping(College of Mathematical Science,Sichuan Normal University,Chengdu 610066,Sichuan;College of Mathematics and Computer Science,Aba Teachers College,Wenchuan 623002,Sichuan)
出处 《四川师范大学学报(自然科学版)》 CAS 北大核心 2020年第2期181-186,共6页 Journal of Sichuan Normal University(Natural Science)
基金 国家自然科学基金(61573240)。
关键词 半环 半线性空间 线性变换 线性变换的值域 线性变换的核 semiring semilinear space linear transformation image of linear transformation kernel of linear transformation
  • 相关文献

参考文献3

二级参考文献35

  • 1Cuninghame-Green R A,Butovic P. Bases in max-algebra[J].{H}Linear Algebra and its Applications,2004.107-120.
  • 2Gregory D A,Pullman N J. Semiring rank:Boolean rank and nonnegative rank factorization[J].J Combin Info Syst Sci,1983,(3):223-233.
  • 3Ghosh S. Matrices over semirings[J].Information and Sciences,1996.221-230.
  • 4Beasley L B,Lee S G. Linear operations strongly preserving r-potent matrices over semirings[J].{H}Linear Algebra and its Applications,1992.589-599.
  • 5M inoux M. Bideterminants arborescences and extension of the matrix-tree theorem to semirings[J].{H}DISCRETE MATHEMATICS,1997.191-200.
  • 6Poplin P L,Hartwig R E. Determinantal identities over commutative semirings[J].{H}Linear Algebra and its Applications,2004.99-132.
  • 7Reutenauer C,Straubing H. Inversions of matrices over a commutative semiring[J].{H}Journal of Algebra,1984.350-360.
  • 8Di Nola A,Lettieri A,Perfilieva I. Algebraic analysis of fuzzy systems[J].{H}Fuzzy Sets and Systems,2007.l-22.
  • 9Tan Y J. On invertible matrices over antirings[J].{H}Linear Algebra and its Applications,2007.428-444.
  • 10Golan J S. Semirings and Their Applications[M].Dordrccht:Kluwer Academic Publishers,1999.

共引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部