期刊文献+

加权ceRNA网络筛选乳腺癌生物标志物 被引量:2

Screening of Breast Cancer Biomarkers by Weighted ceRNA Network
下载PDF
导出
摘要 竞争性内源RNA(competing endogenous RNA,ceRNA)作为生物标志物和潜在的治疗靶点,在探究肿瘤的发病机制中,表现出了巨大的研究价值和临床应用前景。本文对乳腺癌ceRNA网络进行了系统的分析,首先通过差异分析获得差异miRNA、mRNA和lncRNA,其次利用网络的边聚集系数(edge clustering coefficient,ECC)和皮尔逊相关系数(Pearson correlation coefficient,PCC)计算ceRNA网络节点的权重,最后采用基于随机森林的逐步特征选择(stepwise feature selection based on random forest,SFS-RF)方法筛选出一组可作为乳腺癌生物标志物的RNA———LINC00466、CHL1-AS2和LINC00337,并利用GEO数据库验证了该组RNA对乳腺癌样本的识别情况。此外,通过GO和KEGG通路富集分析探索了该组RNA在乳腺癌中的生物学功能。结果显示:这些RNA作为生物标志物,在识别乳腺癌样本方面具有高精度和高效率等特性,在乳腺肿瘤细胞的增殖及遗传物质的合成等过程中具有重要生物学意义。 As a biomarker and a potential therapeutic target,competing endogenous RNAs(ceRNAs)have shown great research values and clinical application prospects in exploring the pathogenesis of tumors.Herein,the breast cancer ceRNA network was systematically analyzed.Firstly,differential RNAs were obtained by differential analysis.Secondly,the weight of the ceRNA network node was calculated by the edge clustering coefficient(ECC)and the Pearson correlation coefficient(PCC).Finally,LINC00466,CHL1-AS2 and LINC00337 were selected as biomarkers by the stepwise feature selection based on random forest(SFS-RF),and were used to identify breast cancer samples in GEO database.In addition,the biological function of this group of RNAs in breast cancer was explored by GO and KEGG pathway enrichment analysis.The results showed that this group of RNAs,used as a biomarker,has high accuracy and high efficiency in identifying breast cancer samples,and has important biological significance in the proliferation of breast cancer cells and the synthesis of genetic material.
作者 朱东月 朱平 ZHU Dong-yue;ZHU Ping(School of Science,Jiangnan University,Wuxi 214122,Jiangsu,China)
出处 《生命科学研究》 CAS CSCD 2020年第1期21-29,共9页 Life Science Research
基金 国家自然科学基金资助项目(11271163) 2018江苏省研究生科研与实践创新项目(KYCX18_1865)
关键词 乳腺癌 ceRNA网络 随机森林 生物标志物 breast cancer ceRNA network random forest biomarkers
  • 相关文献

参考文献4

二级参考文献46

  • 1Chen Y, Dougherty ER, Bittner ML, et al. Ratio statistics of gene expression levels and applications to microarry data analysis [ J ].Bioinformatics, 2002, 18(9): 1207-1215.
  • 2Derisi J, Penland L, Su YA, et al. use of a CDNA microarray to analyse gene expression patterns in human cancer [ J ]. Nat Genet,1996,14:457-460.
  • 3Peterson LE. Partitioning large-sample microarray-based gene expression profiles using principal components analysis [ J ]. Comput Methods Programs Biomed. 2003, 70(2) : 107-119.
  • 4Eisen MB, SpeUman PT, Brown PO. Cluster analysis and display of genome-wide expression patterns[J ]. Proc Nad Acad Sci USA,1998, 95(25) : 14683-14868.
  • 5De Vos J, Thykjaer T, Tarte K,et al. Comparison of gene expression profiling between malignant and normal plasma cells with oligonucleotide arrays[ J]. Oncogene. 2002, 21 (44) : 6848-6857.
  • 6Quackenbush J. Computational analysis of microarray data [ J ].Nat Rev Genet, 2001, Jun; 2(6) : 418-427.
  • 7Butte AJ, Tamayo P, Slonim D,et al. Discovering functional relationships between RNA expression and chemotherapeutic susceptibility using relevance networks [ J ]. Proc Natl Acad Sci USA.2000, 24; 97(22) : 12182-12186.
  • 8Li WJ, Xiong MM. Tclass: Tumor classification system based on gene expression profile [ J ]. Bioinformatics, 2002, 18 ( 2 ) : 325-326.
  • 9Wikman H, Seppanen JK, Anttila S, et al. Caveolins as tumour markers in lung cancer detected by combined use of cDNA and tissue micmarrays[ J]. J Pathol, 2004,203 ( 1 ) : 584-593.
  • 10Crescenzi M, Giuliani A. The main biological determinants of tumor line taxonomy elucidated by a principal component analysis of microarray data [J]. FEBS Lett, 2001, 507(1) : 114-118.

共引文献20

同被引文献8

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部