期刊文献+

差分隐私的查询一致性约束研究 被引量:1

Query consistency constraints of differential privacy
下载PDF
导出
摘要 针对差分隐私直方图发布中区间查询的不一致问题,研究已有需迭代调整的局部最优线性无偏估计算法LBLUE,提出一种不需迭代且满足一致性约束查询的CA算法。通过对1棵添加Laplace噪声的满k-叉区间树进行一致性调整:先利用TDICE算法进行自顶向下的不一致估计,再利用BUCE算法进行自底向上的一致性估计,得到满足一致性约束查询的差分隐私满k-叉区间树,遍历后发布满足一致性约束查询的直方图数据。经过证明和实验分析,一致性调整后的查询区间满足一致性约束查询,且精确度优于Boost-2算法和LBLUE算法的,同时算法的时间效率高于LBLUE算法的。 Aiming at the inconsistency phenomenon of range query in differential privacy histogram publishing,we study the local optimal linear unbiased estimation algorithm LBLUE that needs iterative adjustment and propose a CA algorithm that does not need iteration and satisfies the consistency constraint query.Consistency adjustment is performed on a full k-ary range tree with Laplace noise:the TDICE algorithm is first used for top-down inconsistency estimation,and then the BUCE algorithm is used for bottom-up consistency estimation,so as to obtain a full k-ary range tree with differential privacy,which meets consistency constraint query.The histogram data satisfying the consistency constraint query is published after traversal.Proof and experimental analysis show that the query range after consistency adjustment satisfies the consistency constraint query.It has higher accuracy than Boost-2 algorithm and LBLUE algorithm,and higher time efficiency than LBLUE algorithm.
作者 贾俊杰 陈慧 马慧芳 牟玉祥 JIA Jun-jie;CHEN Hui;MA Hui-fang;MU Yu-xiang(School of Computer Science and Engineering,Northwest Normal University,Lanzhou 730070,China)
出处 《计算机工程与科学》 CSCD 北大核心 2020年第1期71-79,共9页 Computer Engineering & Science
基金 兰州市科技发展计划项目(20141256) 甘肃省档案科技项目(2016-09) 甘肃省高等学校创新能力提升项目(2019A-006)
关键词 差分隐私 Laplace机制 敏感度 一致性约束查询 differential privacy Laplace mechanism sensitivity consistency constraint query
  • 相关文献

参考文献5

二级参考文献42

  • 1Fung B C M, Wang K, Chen R, et al. Privacy-Preserving Data Publishing: A Survey on Recent Developments[EB/OL]. [2014-11-30]. http://www.cs.sfu.ca/~wangk/pub/FWCY10csur.pdf.
  • 2Sweeney L. k-Anonymity: A Model for Protecting Privacy. International Journal on Uncertainty, Fuzziness and Knowledge-Based Systems, 2002, 10(5): 557-570.
  • 3Machanavajjhala A, Gehrke J, Kifer D, et al. l-Diversity: Privacy beyond k-Anonymity // Proc of the 22nd International Conference on Data Engineering. Atlanta, USA, 2006: 24-35.
  • 4Li N H, Li T C, Venkatasubramanian S. t-Closeness: Privacy beyond k-Anonymity and l-Diversity // Proc of the 23rd International Conference on Data Engineering. Istanbul, Turkey, 2007: 106-115.
  • 5Dwork C. Differential Privacy[EB/OL]. [2014-11-30]. http://research.microsoft.com/en-us/projects/databaseprivacy/dwork.pdf.
  • 6Dwork C, McSherry F, Nissim K, et al. Calibrating Noise to Sensitivity in Private Data Analysis // Proc of the 3rd Conference on Theory of Cryptography. New York, USA, 2006: 265-284.
  • 7Xiao X K, Wang G Z, Gehrke J. Differential Privacy via Wavelet Transforms. IEEE Trans on Knowledge and Data Engineering, 2011, 23(8): 1200-1214.
  • 8Cormode G, Procopiuc C M, Srivastava D, et al. Differentially Private Summaries for Sparse Data // Proc of the 15th International Conference on Database Theory. Berlin, Germany, 2012: 299-311.
  • 9Xu J, Zhang Z J, Xiao X K, et al. Differentially Private Histogram Publication. The VLDB Journal, 2013, 22(6): 797-822.
  • 10Acs G, Castelluccia C, Chen R. Differentially Private Histogram Publishing through Lossy Compression // Proc of the 12th IEEE International Conference on Data Mining. Brussels, Belgium, 2012. DOI: 10.1109/ICDM.2012.80.

共引文献265

同被引文献3

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部