期刊文献+

BRISK-DAISY无人机影像匹配算法研究 被引量:8

Research on BRISK-DAISY UAV image matching algorithm
下载PDF
导出
摘要 影像匹配是无人机影像分析的关键步骤,通过对常用影像匹配算法的对比研究,提出一种基于BRISK特征点与DAISY描述子的影像匹配算法。该算法首先采用BRISK算法提取影像特征点,然后利用DAISY描述子进行特征描述,最后基于单映射变换矩阵的RANSAC算法进行影像精准匹配。文中对不同算法开展试验研究,对比分析影像匹配的特征提取数量、单个特征点提取时间、正确匹配对数和单次匹配平均时间、匹配正确率等5个指标。试验结果表明:与BRISK算法相比,单个特征点提取耗时约是BRISK算法的80%,单次匹配所需平均时间为BRISK算法的30%,甚至更短。与其它常规匹配算法相比,文中算法的匹配正确率与其他算法相当,但获得更多的正确匹配对数,并且文中算法在单次匹配平均时间、单个特征点提取时间与特征点提取数等方面更优。 Image matching is a key step in UAV image analysis.Based on the comparison of common image matching algorithms,this paper proposes an image matching algorithm based on BRISK feature points and DAISY descriptors.Firstly,the algorithm extracts image feature points by BRISK algorithm,then uses DAISY descriptors to describe the features.Finally,the RANSAC algorithm based on single mapping transformation matrix is used to accurately match images.In this paper,the experimental research on different algorithms is carried out,and the five indicators such as the number of feature extraction,the single feature point extraction time,the correct matching logarithm and the single matching average time,and the matching correct rate are compared and analyzed.The experimental result shows that compared with the BRISK algorithm,the single feature point extraction time consumption of the proposed algorithm is about 80%of the time-consuming BRISK algorithm,and the average time required for a single match is 30%or even shorter of the average time of the BRISK algorithm.Compared with other conventional matching algorithms,the correct matching rate of the proposed algorithm is comparable to other algorithms.More correct matching logarithms can be obtained.The average time of single matching,single feature point extraction time and feature point extraction are obtained,of which the numbers are better.
作者 曹留霞 王晓红 李闯 何志伟 邓仕雄 CAO Liuxia;WANG Xiaohong;LI Chuang;HE Zhiwei;DENG Shixiong(College of Mining,Guizhou University,Guiyang 550025,China;College of Forestry,Guizhou University,Guiyang 550025,China;Guizhou Vocational and Technical College of Water Resources and Hydropower,Guiyang 551400,China)
出处 《测绘工程》 CSCD 2020年第2期17-22,共6页 Engineering of Surveying and Mapping
基金 贵州省自然科学基金资助项目(黔科合J字[2014]2070) 贵州省科技计划课题(黔科合LH字[2014]7649) 贵州省研究生教育教学改革重点课题(黔教研合JG字[2015]010) 贵州大学研究生重点课程建设项目(贵大研ZDKC[2015]008) 贵州大学测绘科学与技术研究生创新实践基地建设项目(贵大研CXJD[2014]002)。
关键词 影像匹配 BRISK算法 DAISY描述子 RANSAC算法 无人机影像 image matching BRISK feature DAISY Descriptor RANSAC algorithm UAV image
  • 相关文献

参考文献14

二级参考文献136

  • 1苏凤环,刘洪江,韩用顺.汶川地震山地灾害遥感快速提取及其分布特点分析[J].遥感学报,2008,12(6):956-963. 被引量:76
  • 2李巧枝,张吴明,阎广建,穆西晗.月球卫星三线阵CCD影像模拟[J].北京师范大学学报(自然科学版),2007,43(3):298-302. 被引量:5
  • 3LI Hui, et al. A Contour-Based Approach to Multisensor Image Registeation[J]. IEEE Transaction on Image Processing, 1995,4(3).
  • 4PRATT W. Digital Image Processing [ M ]. NewYork: Wiley, 1991.
  • 5HARALICK R, et al. Computer and Robot Vision[ M]. Massachusetts: Addison-Wesley, 1993.
  • 6ZHENG Q F,CHELLAPPA R. A Computational Vision Approach to Image Registration[J]. IEEE Transaction on Image Processing, 1993,2(3).
  • 7HSU C T, BEUKER R A. Multiresolution Feature-Based Image Registration [ A ]. Proceedings of SPIE[ C]. Perth: [s n ],2000.
  • 8SMITH S M, BRADY J M. SUSAN-A New Approach to Low Level Image Processing[J]. Int Journal of Computer Vision, 1997,23( 1 ).
  • 9MORAVEC H P. Towards Automatic Visual Obstacle Avoidance[ A]. In Proceeding of International Joint Conference on Artificial Intelligence[ C ]. Cambfige: [ s n ], 1977.
  • 10MORAVEC H P. Visual Mapping by a Robot Rover[ A]. In Proceeding of the 6th International Joint Conference on Artificial Intelligence [ C ]. San Francisco:[s n], 1979.

共引文献228

同被引文献60

引证文献8

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部