期刊文献+

改进布谷鸟算法优化支持向量机的隧道变形预测分析 被引量:1

Research on tunnel deformation prediction by support vector machine model based on improved cuckoo search algorithm
下载PDF
导出
摘要 传统支持向量机参数寻优时间较长,模型的稳定性也较差。为解决传统支持向量机预测模型在隧道围岩变形预测中精度较低的问题,引入布谷鸟算法,同时改进布谷鸟算法中的搜索公式,从而提出一种基于改进布谷鸟算法的支持向量机组合预测模型。将此模型运用到云南省昆明市阳宗隧道围岩位移预测中,并与标准布谷鸟算法的支持向量机组合模型以及单一的支持向量机模型比较,实验结果表明:基于改进布谷鸟算法的支持向量机模型精度更高,更具有优势。 The traditional support vector machine needs a long time to optimize parameters and the stability of the model is poor.In order to solve the problem of low accuracy of traditional support vector machine in tunnel surrounding rock deformation prediction,therefore,this paper combines support vector machine with cuckoo algorithm,and improves the search formula of cuckoo algorithm at the same time,by proposing a combined prediction model of support vector machine based on improved cuckoo algorithm.Finally,the model is applied to the displacement prediction of a tunnel surrounding rock.Comparing with the support vector machine combination model based on the standard cuckoo algorithm and the single support vector machine model,the experimental result shows that the support vector machine model based on the improved cuckoo algorithm has higher precision and more advantages.
作者 刘超湖 刘小生 LIU Chaohu;LIU Xiaosheng(School of Architectural and Surveying&Mapping Engineering,Jiangxi University of Science and Technology,Ganzhou 341000,China)
出处 《测绘工程》 CSCD 2020年第2期42-45,51,共5页 Engineering of Surveying and Mapping
基金 国家自然科学基金资助项目(41561091)。
关键词 布谷鸟算法 自适应步长 支持向量机 隧道变形预测 cuckoo algorithm adaptive step size support vector machine tunnel deformation prediction
  • 相关文献

参考文献7

二级参考文献97

共引文献262

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部