期刊文献+

基于正交约束的分块不完整多视角聚类 被引量:2

Chunk-by-Chunk Incomplete Multi-view Clustering Based on Orthogonal Constraints
下载PDF
导出
摘要 在处理数据特征提取问题时,已有的基于非负矩阵分解的不完整多视角聚类算法对局部特征的提取不够准确.针对此问题,文中提出基于正交约束的分块不完整多视角聚类(CIMVCO).利用非负矩阵分解获得所有视角的潜在特征矩阵,通过加入正交约束得到更好的局部特征.对于各个视角的缺失样本,CIMVCO给予较小的权重以减小缺失数据的影响.为了解决大规模数据的聚类问题,CIMVCO逐块处理数据以减少内存需求和处理时间.在Reuters和Digit数据集上的实验验证CIMVCO的有效性. Existing incomplete multi-view clustering algorithms based on nonnegative matrix factorization(NMF)cannot extract local features accuratly.To solve this problem,an algorithm of chunk-by-chunk incomplete multi-view clustering based on orthogonal constraints(CIMVCO)is proposed.A potential feature matrix of all views is obtained by nonnegative matrix factorization,and orthogonal constraints are added to obtain better local features.For missing samples of each view,smaller weights are given to reduce the impact of missing data.To solve the problem of large scale data clustering,data are processed block-by-block to reduce the memory demand and processing time.Experimental results on Reuters and Digit datasets demonstrate the effectiveness of CIMVCO.
作者 姜健伟 殷俊 JIANG Jianwei;YIN Jun(College of Information Engineering,Shanghai Maritime University,Shanghai 201306)
出处 《模式识别与人工智能》 EI CSCD 北大核心 2020年第1期41-49,共9页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金项目(No.61603243) 中国博士后科学基金项目(No.2017M611503)资助~~
关键词 分块 多视角聚类 非负矩阵分解(NMF) 正交约束 Chunk-by-Chunk Multi-view Clustering Nonnegative Matrix Factorization(NMF) Orthogonal Constraints
  • 相关文献

参考文献2

二级参考文献16

  • 1李洁,高新波,焦李成.模糊CLOPE算法及其参数优选[J].控制与决策,2004,19(11):1250-1254. 被引量:4
  • 2杨春宇,周杰.一种混合属性数据流聚类算法[J].计算机学报,2007,30(8):1364-1371. 被引量:22
  • 3Ntoutsi I, Zimek A, Palpanas T, et al. Density-Based Projected Clustering over High Dimensional Data Streams// Proc of the 12th SIAM International Conference on Data Mining. Anaheim, USA, 2012 : 987-998.
  • 4Kranen P, Kremer H, Jansen T, et al. Stream Data Mining Using the MOA Framework//Proc of the 17th International Conference on Database Systems for Advanced Applications. Busan, Republic of Korea, 2012 : 309-313.
  • 5Halkidi M, Koutsopoulos I. Online Clustering of Distributed Strea ing Data Using Belief Propagation Techniques// Proc of the 17 IEEE International Conference on Mobile Data Management. Lul1 Sweden, 2011, I: 216-225 |.
  • 6Aggarwal C C, Han J W, Wang J Y, eta/. A Framework for Cluste- ring Evolving Data Streams//Proc of the 29th International Confer- ence on Very Large Data Bases. Berlin, Germany, 2003:81-92.
  • 7Aggarwal C C, Han J W, Wang J Y, et al. A Framework for Projec- ted Clustering of High Dimensional Data Streams//Proc of the 30th International Conference on Very Large Data Bases. Toronto, Cana- da, 2004:852-863.
  • 8Cao F, Ester M, Qian W N, et al. Density-Based Clustering over an Evolving Data Stream with Noise/! Proc of the 6th SIAM Interna- tional Conference on Data Mining. Bethesda, USA, 2006: 328- 339.
  • 9Chen Y X, Tu L. Density-Based Clustering for Real-Time Stream Data//Proc of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Jose, USA, 2007: 133-142.
  • 10Zhang X L, Furtlehner C, Sebag M. Data Streaming with Affinity Propagation//Proc of the European Conference on Machine Learn- ing and Knowledge Discovery in Databases. Antwerp, Belgium, 2008 : 628-643.

共引文献24

同被引文献20

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部