摘要
非奇异H矩阵的判别在经济数学和控制论等诸多领域是非常重要的.利用不等式的放缩技巧和构造精巧的正对角阵,得到了一组新的非奇异H矩阵的充分条件,该条件简捷而实用且改进和推广了相应的结论,达到了非奇异H矩阵判别范围扩大的目的.最后用数值算例验证了该充分条件的优越性.
To determine a given matrix is a nonsingular H-matrix or not plays an important role in mathematical economics,control theory,and so on.To get more nonsingular H-matrices easily,several practical sufficient conditions for nonsingular H-matrices are obtained by constructing exquisite positive diagonal matrices and applying some technical of inequalities.The corresponding results are improved and extended.Advantages of these results are illustrated by a numerical example.
作者
刘长太
徐静
徐辉军
LIU Chang-tai;XU Jing;XU Hui-jun(Department of Basic,Yangzhou Polytechnic Institute,Yangzhou 225127;College of Science,Guizhou Minzu University,Guiyang 550025)
出处
《工程数学学报》
CSCD
北大核心
2020年第1期75-88,共14页
Chinese Journal of Engineering Mathematics
基金
国家自然科学基金(11361074)
贵州省科学基金([2015]2073)
贵州省教育厅自然科学基金([2015]420)~~
关键词
非奇异H矩阵
广义NEKRASOV矩阵
广义严格对角占优矩阵
不可约
非零元素链
nonsingular H-matrices
generalized Nekrasov matrices
strictly generalized diagonally dominant matrices
irreducibility
nonzero elements chain