期刊文献+

校园一卡通数据挖掘分析设计与应用 被引量:2

Design and Application of Campus Smart Card Data Mining and Analysis
下载PDF
导出
摘要 随着数字化校园在各高校的不断建立与完善,校园一卡通已成为数字化校园建设体系中的重要系统,而鉴于在产生数以万计数据的同时,其本身并不具备数据比对和深层次挖掘功能的情况下,本文对校园一卡通产生的数据,通过数据仓库的设计,选取部分学生消费数据,利用数据挖掘技术分析潜在的价值和信息。 With the continuous establishment and perfection of digital campus in colleges and universities,campus card becomes an important system in the construction system of digital campus.In view of the tens of thousands of data generated at the same time,it does not have the function of data comparison and deep-seated mining,in this paper,the data generated by campus card is communicated.Through the design of data warehouse,it selects some students consumption data,and uses data mining technology to analyze potential value and information.
作者 丁洁 贾应炜 苏兴龙 郇林 DING Jie;JIA Ying-wei;SU Xing-long;HUAN Lin(Shaanxi Polytechnic Institute,Xianyang 712000 China)
出处 《自动化技术与应用》 2020年第2期132-137,共6页 Techniques of Automation and Applications
基金 2018年陕西省教育厅专项科学研究项目(编号18JK0063) 2017年陕西工业职业技术学院自然科学科研项目(编号ZK17-15)
关键词 数据仓库 一卡通系统 数据挖掘 data warehouse campus smart card system data mining
  • 相关文献

参考文献6

二级参考文献83

  • 1胡吉明,鲜学丰.挖掘关联规则中Apriori算法的研究与改进[J].计算机技术与发展,2006,16(4):99-101. 被引量:59
  • 2史鑫,朱巧明,李培峰,孔芳.面向数字化校园的共享数据库中心的设计[J].苏州大学学报(自然科学版),2006,22(3):37-41. 被引量:17
  • 3王天亮,陈刚,徐宏炳.基于共享数据库的数据共享技术[J].计算机工程与设计,2007,28(8):1923-1926. 被引量:11
  • 4Chen M S,Han J W,Yu P S. Data Mining: An Overview from a Database Perspective[ J]. IEEE Transactions on Knowledge and Data Engineering, 1996,8 (6) : 866 - 883.
  • 5Han J W,Kamber M. Data Mining Concepts and Techniques[ M]. Beijing: Higher Education Press,2001.
  • 6Agrawal R, Srikant R. Fast algorithms for mining association rules in large databases [ C ]. Proceedings of the 20th International Conference on Very Large Data Bases, September 1994.
  • 7Han E H, Karypis G, Kumar V. Scalable parallel data mining for association rules[ C ]. ACM SIGMOD International Conference on Management of Data, May, 1997.
  • 8Agrawa! R, Imielinski T, Swami A. Mining association rules between. sets of items in large databases[ C ]. Proceedings of the ACM SIGMOD International Conference on Management of Data ; May, 1993.
  • 9Wur S Y, Leu Y H. An effective Boolean algorithm for mining association rules in large databases [ C ]. Database Systems for Advanced Applications, 1999 : Proceedings, 6th International Conference, April, 1999:19 -21.
  • 10Li S, Hong S, Ling C. New algorithms for efficient mining of association rules [ C]. Proceedings of the 7^th Symposium on the Frontiers of Massively Parallel Computation, February, 1999.

共引文献150

同被引文献12

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部