期刊文献+

基于深度相机的疲劳预警检测算法研究 被引量:1

Fatigue Warning Detection Algorithm Based on Depth Camera
下载PDF
导出
摘要 为解决复杂环境下传统彩色图像对危险驾驶行为无法正确识别的难点,本文提出一种基于深度相机的疲劳预警检测方法。首先通过深度相机获取驾驶员的红外图像与深度图像,对获取的红外图像使用局部二值模式(local binary pattern,LBP)特征算子检测定位人脸区域;在人脸区域使用随机森林和全局线性回归相结合的方法训练出模型,并检测定位人脸的68个特征点,进而确定眼睛和嘴巴的闭合状态。为了增强疲劳检测的准确性,判断驾驶员佩戴眼镜情况,采用改进的疲劳检测算法判定驾驶员的疲劳状态,同时采用图像处理方法对眼部状态与嘴部状态进行疲劳检测。检测结果表明,本算法能够有效识别白天和夜间眼睛与嘴部的疲劳状态,具有较强的实用性。 In order to solve the difficulty that traditional color images can’t correctly identify dangerous driving behaviors in complex environments,a fatigue warning method based on depth camera is proposed in this paper.Firstly,the infrared image and the depth image of the driver are obtained by the depth camera,and the local binary region mode feature operator is used to detect the localized face region for the acquired infrared image;the random face forest is combined with the global linear regression method for training in the face region.The model is detected,and 68 feature points of the face are detected to determine the closed state of the eyes and mouth;in order to enhance the accuracy of the fatigue detection,and whether or not the driver wears the glasses,the fatigue state of the driver is determined by the improved fatigue detection algorithm.At the same time,the image processing method is used to perform fatigue detection on the eye state and the mouth state.The test results show that the algorithm can effectively identify the fatigue state of the eyes and mouth during the day and night,and has strong practicability.
作者 李金宝 张维忠 LI Jinbao;ZHANG Weizhong(College of Computer Science&Technology,Qingdao University,Qingdao 266071,China)
出处 《青岛大学学报(工程技术版)》 CAS 2020年第1期27-32,共6页 Journal of Qingdao University(Engineering & Technology Edition)
关键词 OPENCV 疲劳检测 人脸关键点 红外图像 危险驾驶 OpenCV fatigue detection face key points infrared image dangerous driving
  • 相关文献

参考文献5

二级参考文献70

  • 1丁克良,欧吉坤,赵春梅.正交最小二乘曲线拟合法[J].测绘科学,2007,32(3):18-19. 被引量:68
  • 2Samuel G, Peter H. Fatigue, work-rest cycles, and psychomotor performance of New Zealand truck drivers. New Zealand Journal of Psychology, 2001, 30(1): 32-39.
  • 3Takahashi I, Yokoyama K. Development of a feedback stimulation for drowsy driver using heartbeat rhythms. Engineering in Medicine and Biology Society. Boston, 2011:4153-4158.
  • 4Rogado E, Garcia J, Barea R, et al. Driver fatigue detection system // Robotics and Biomimetics. Bangkok, 2009:1105 1110.
  • 5Celenk M, Eren H, Poyraz M. Prediction of driver head movement via Bayesian learning and ARMA modeling // Intelligent Vehicles Symposium. Xi'an, 2009:542-547.
  • 6Sandberg D, Wahde M. Particle swarm optimization of feedforward neural networks for the detection of drowsy driving//Neural Networks. Hong Kong, 2008: 788-793.
  • 7Kim Y, Youmin K, Hahn M. Detecting driver fatigue based on the driver's response pattern and the front view environment of an automobile // Second International Symposium. Osaka, 2008:237 240.
  • 8Garcia I, Bronte S, Bergasa L M, et al. Vision-based drowsiness detector for a realistic driving simulator// Intelligent Transportation Systems, 13th International IEEE Conference. Funchal, 2010:887-894.
  • 9Wang H, Cheng Y, Wang Qi, et al. A practical eye state recognition based driver fatigue detection method//CCPR 2009. Nanjing, 2009:1-5.
  • 10Ji Q, Lan P, Looney C. A probabilistic framework for modeling and real-time monitoring human fatigue. IEEE Transactions on Systems, Man, and Cybernetics: Part A, 2006, 36(5): 862-875.

共引文献40

同被引文献8

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部