期刊文献+

一种基于GAN和自适应迁移学习的样本生成方法 被引量:1

Sample generation method based on GAN and adaptive transfer learning
下载PDF
导出
摘要 研究了基于生成式对抗网络(GAN)和跨域自适应迁移学习的样本生成和自动标注方法。该方法利用自适应迁移学习网络,基于已有的少量可见光图像样本集,挖掘目标在红外和可见光图像中特征内在相关性,构建自适应的转换迁移学习网络模型,生成标注好的目标图像。提出的方法解决了红外图像样本数量少且标注费时的问题,为后续多频段协同目标检测和识别获得了足够的样本数据。实验结果表明:自动标注算法对实际采集的装甲目标图像和生成的装甲目标图像各1000张进行自动标注测试,对实际装甲目标图像的标注准确率达到95%以上,对生成的装甲目标标注准确率达到83%以上;利用真实图像和生成图像的混合数据集训练的分类器的性能和使用纯真实图像时基本一致。 The method of sample generation and automatic annotation based on the generative countermeasure network(GAN)and cross-domain adaptive transfer learning was studied.In this method,the adaptive transfer learning network is used to explore the intrinsic correlation of target features in infrared and visible images based on the small number of existing visible image samples,and the adaptive transfer learning network model is constructed to generate tagged target images.The problem of small number of infrared image samples and time-consuming labeling can be solved by proposed method,which provides enough sample data for subsequent multi-band cooperative target detection and recognition.Moreover,automatic standard tests were carries out on the 1000 pieces of actual acquired and 1000 pieces of generated armored target images,respectively,by using the automatic standard algorithm The experimental results show that the accuracy of the actual armored target image labeling is more than 95%,and that of the generated armored target image labeling is more than 83%.The performance of classifiers trained with the mixed dataset of real images and generate images is basically the same as when using the pure real images.
作者 周立君 刘宇 白璐 茹志兵 于帅 ZHOU Lijun;LIU Yu;BAI Lu;RU Zhibing;YU Shuai(Xi’an Institute of Applied Optics,Xi’an 710065,China;Xi’an North Electro-optic Science and Technology Co.,LTD.,Xi’an 710043,China)
出处 《应用光学》 CAS CSCD 北大核心 2020年第1期120-126,共7页 Journal of Applied Optics
基金 装备预先研究兵器工业联合基金(6141B01020205)
关键词 样本生成 目标标注 GAN 迁移学习 sample generation target labeling GAN transfer learning
  • 相关文献

参考文献4

二级参考文献39

  • 1王飞跃.平行系统方法与复杂系统的管理和控制[J].控制与决策,2004,19(5):485-489. 被引量:332
  • 2王飞跃.计算实验方法与复杂系统行为分析和决策评估[J].系统仿真学报,2004,16(5):893-897. 被引量:147
  • 3王飞跃.关于复杂系统的建模、分析、控制和管理[J].复杂系统与复杂性科学,2006,3(2):26-34. 被引量:64
  • 4Smeulders A W M, Worring M, Santini S, et al. Content-based image retrieval at the end of the early years [J]. IEEE Transac- tions on Pattern Analysis and Machine Intelligence, 2000, 22(12) : 1349-1350.
  • 5Datta R, Joshi D, Li J, et al. Image retrieval: ideas, influ- ences, and trends of the new age[J]. ACM Computing Surveys, 2008,40(2) : 1-60.
  • 6Zhang D S, Islam M M, Lu G J. A review on automatic image annotation techniques [J]. Pattern Recognition, 2012, 45( 1 ): 346-362.
  • 7Li Z X, Shi Z P, Liu X, et al. Automatic image annotation with continuous PLSA [ C]// Proceedings of the 35th IEEE Intema- tional Conference on Acoustics, Speech and Signal Processing. Los Alamitos : IEEE Computer Society, 2010 : 806-809.
  • 8Read J, Pfahringer B, Holmes G, et al. Classifier chains for multi-label classification [ J ]. Machine Learning, 2011, 85 ( 3 ) : 333 -359.
  • 9Duygulu P, Barnard K, de Freitas J F G, et al. Object recogni- tion as machine translation: learning a lexicon for a fixed image vocabulary [ C ] //Lecture Notes in Computer Science, Berlin: Springer, 2002, 2353 : 97-112.
  • 10Barnard K, Duygulu P, Forsyth D, et al. Matching words and pictures [ J]. Journal of Machine Learning Research, 2003, 3(2) : 1107-1135.

共引文献411

同被引文献16

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部