摘要
提出一种融合门控机制的远程监督关系抽取方法。首先在词级别上自动选择正相关特征,过滤与关系标签无关的词级别噪声;然后在门控机制内引入软标签的思想,弱化硬标签对噪声过滤的影响;最后结合句子级别的噪声过滤,提升模型的整体性能。在公开数据集上的实验结果表明,相对于句子级别噪声过滤方法,所提方法的性能有显著提高。
A piecewise convolutional neural network with gating mechanism is proposed,which would automatically filter positive correlation features at word-level.Moreover,the idea of soft-label is introduced to the gating mechanism to weaken the impact of hard labels on noise filtering.Combined with sentence-level noise filtering,the overall performance of the model is improved.The experimental results on the public dataset show that the proposed model has a significant improvement compared to the sentence-level noise filtering methods.
作者
李兴亚
陈钰枫
徐金安
张玉洁
LI Xingya;CHEN Yufeng;XU Jin’an;ZHANG Yujie(School of Computer and Information Technology,Beijing Jiaotong University,Beijing 100044)
出处
《北京大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2020年第1期39-44,共6页
Acta Scientiarum Naturalium Universitatis Pekinensis
基金
国家自然科学基金(61976016,61473294,61370130,61876198)
北京市自然科学基金(4172047)
科学技术部国际科技合作计划(K11F100010)资助
关键词
关系抽取
远程监督
门控机制
卷积神经网络
relation extraction
distant supervision
gate mechanism
convolutional neural network