期刊文献+

基于句法结构的神经网络复述识别模型 被引量:3

A Neural Paraphrase Identification Model Based on Syntactic Structure
下载PDF
导出
摘要 为解决已有复述语义计算方法未考虑句法结构的问题,提出基于句法结构的神经网络复述识别模型,设计基于树结构的神经网络模型进行语义组合计算,使得语义表示从词语级扩展到短语级。进一步地,提出基于短语级语义表示的句法树对齐机制,利用跨句子注意力机制提取特征。最后,设计自注意力机制来增强语义表示,从而捕获全局上下文信息。在公开英语复述识别数据集Quora上进行评测,实验结果显示,复述识别性能得到改进,达到89.3%的精度,证明了提出的基于句法结构的语义组合计算方法以及基于短语级语义表示的跨句子注意力机制和自注意力机制在改进复述识别性能方面的有效性。 Paraphrase identification involves natural language semantic understanding.Most previous methods regarded sentences as sequential structures,and used sequential neural network for semantic composition.These methods do not consider the influence of syntactic structure on semantic computation.In this paper,we proposed a neural paraphrase identification model based on syntactic structure,and designed a tree-based neural network model for semantic composition,which extended the semantic representation from word level to phrase level.Furthermore,this paper proposed a syntactic tree alignment mechanism based on phrase-level semantic representation,and extracted features by using cross-sentence attention mechanism.Finally,a self-attention mechanism was used to enhance semantic representation,which could effectively model context information based on syntactic structure.Experiments on Quora paraphrase dataset show that the performance of paraphrase identification has been improved to 89.3%accuracy.The results further prove that the proposed semantic composition method based on syntactic structure,phrase-level cross sentence attention and self-attention are effective in improving paraphrase identification.
作者 刘明童 张玉洁 徐金安 陈钰枫 LIU Mingtong;ZHANG Yujie;XU Jin’an;CHEN Yufeng(School of Computer and Information Technology,Beijing Jiaotong University,Beijing 100044)
出处 《北京大学学报(自然科学版)》 EI CAS CSCD 北大核心 2020年第1期45-52,共8页 Acta Scientiarum Naturalium Universitatis Pekinensis
基金 国家自然科学基金(61876198,61976015,61370130,61473294) 中央高校基本科研业务费专项资金(2018YJS025) 北京市自然科学基金(4172047) 科学技术部国际科技合作计划(K11F100010)资助
关键词 复述识别 句法结构 树结构神经网络 注意力机制 paraphrase identification syntactic structure tree-structured neural network attention mechansim
  • 相关文献

参考文献4

二级参考文献25

  • 1车万翔,刘挺,秦兵,李生.基于改进编辑距离的中文相似句子检索[J].高技术通讯,2004,14(7):15-19. 被引量:64
  • 2秦兵,刘挺,李生.多文档自动文摘综述[J].中文信息学报,2005,19(6):13-20. 被引量:51
  • 3刘挺,李维刚,张宇,李生.复述技术研究综述[J].中文信息学报,2006,20(4):25-32. 被引量:13
  • 4宗成庆 张玉洁 山本和英.面向口语翻译的汉语语句改写方法.Journal of Chinese Language and Computing,2006,12(1):63-77.
  • 5McKeown, K. Paraphrasing using given and new information in a question-answer system[C]//Association for Computational Linguistics. 1979.
  • 6Callison-Burch, C., P. Koehn, and M. Osborne. Improved statistical machine translation using paraphra- ses [C]//Association for Computational Linguistics Morristown, NJ, USA.. 2006.
  • 7Zong, C. , et al. , Approach to Spoken Chinese Paraphrasing Based on Feature Extraction [C]//Proceedings of the 6th Natural Language Processing Pacific Rim Symposium (NLPRS). Tokyo, Japan. 2001: 551-556.
  • 8Harabagiu, S. and A. Hickl. Methods for using textual entailment in open-domain question answering [C]//Association for Computational Linguistics Morristown, NJ, USA. 2006.
  • 9Barzilay, R. , K. McKeown, and M. Elhadad. Information fusion in the context of multi-document summa- rization [C]//1999: Association for Computational Linguisties Morristown, NJ, USA.
  • 10Qiu,L., M. Kan, and T. Chua. Paraphrase recognition via dissimilarity significance classification [C]// Proceedings of the 2006 Conference on Empirical Methods in Natural Language Proeessing. 2006.

共引文献21

同被引文献27

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部