期刊文献+

面向桥壳圆度圆柱度检测装置的并联PID伺服电动机控制器设计 被引量:1

Design of parallel PID controller for servo motor supporting roundness and cylindricity detection of heavy axle housings
下载PDF
导出
摘要 针对重卡桥壳轴头圆度圆柱度在线测量对运动精度、平稳性以及鲁棒性等提出的伺服问题,在伺服运动系统机电耦合动力学建模研究的基础上,提出了基于位置、转速和电流三闭环调速的并联PID控制方法,并结合相位裕度和主导极点配置法整定控制器参数。基于自行搭建的桥壳在线检测实验装置对控制算法进行了实验验证,结果表明提出的控制方法可以根据工业现场对速度和位移跟踪性能要求调节权重,有效实现了伺服电动机匀速、平稳的高精度运动控制,并表现出良好的跟随性能和鲁棒性,极大地提高了桥壳检测装置的检测精度。 The online detection for roundness and cylindricity of heavy axle housings poses significant challenge to accuracy,smoothness and robustness of the rotational motion control for the servo motor.Aiming at improving the measurement accuracy,this paper develops a parallel PID control method on top of the electromechanical coupling dynamical modeling of the servo system,where three-loop controllers of position,velocity and current feedback are adopted.The controller parameters are further tuned according to the phase margin and the dominant pole configuration,such that the controller can effectively apply to practical industrial sites.The effectiveness of the proposed control architecture is further verified by real time experiments on a self-constructed axle housings online detection system,where accurate uniform motion with good smoothness and robustness are demonstrated.The proposed control method can significant improve the measurement accuracy of the axle housing detection device.
作者 高聪 张鹏 刘鹏博 单东日 刘金良 GAO Cong;ZHANG Peng;LIU Pengbo;SHAN Dongri;LIU Jinliang(Mechanical and Automotive Engineering,Qilu University of Technology(Shandong Academy of Sciences),Jinan 250353,CHN)
出处 《制造技术与机床》 北大核心 2020年第2期173-178,共6页 Manufacturing Technology & Machine Tool
关键词 重卡桥壳在线检测 伺服运动控制 机电耦合动力学建模 并联PID控制器 主导极点配置 online detection for heavy axle housing servo motion control electromechanical coupling dynamical modeling parallel PID controller dominant pole placement
  • 相关文献

参考文献4

二级参考文献32

  • 1顾洲,朱建忠.基于WNN-PID的直流电机位置跟踪控制[J].电光与控制,2007,14(3):118-121. 被引量:3
  • 2ASTROM K J, HAGGHUND T. The future of PID control [ J]. Control Engineering Practice,2001,9( 11 ) : 1163-1175.
  • 3KIAM H A, CHONG G, LI Y. PID control system analysis, design, and technology [ J ]. IEEE Transactions on Control Systems Technology, 2005,13 (4) : 559-576.
  • 4LI Y, KIAM H A, CHONG G. PID control system analysis and design [ J ]. IEEE Control Systems Magazine,2006,26 (1) :32-41.
  • 5LI Y Y, SHENG A D, WANG Y G. Synthesis of PID-type controllers without parametric models : a graphical approach [ J ]. Energy Conversion and Management, 2008,49 ( 8 ) :2392-2402.
  • 6ARRIETA O, VISIOLI A, VILANOVA R. PID autotuning for weighted servo/regulation control operation [ J ]. Jour- nal of Process Control ,2010,20 (4) :472-480.
  • 7ASTROM K J, HAGGLUND T. Advanced PID control[ M]. Research Triangle Park, NC : Instruments Society of Ameri- can ,2005.
  • 8WANG Q G, ZHANG Z P, ATROM K J, et, al. Guaran- teed dominant pole placement with PID controllers [J]. Journal of Process Control,2009,19 (2) : 349-352.
  • 9ASTROM K J, HAGGLUND T. PID Controllers : theory, design, and tuning[ M ]. Research Triangle Park, NC : In- strument Society of America, 1995.
  • 10KRISTIANSSON B, LENNARTON B. Evaluation and sim- ple tuning of PID controllers with high-frequency robust- ness [J]. Journal of Process Control,2006,16(2) :91-102.

共引文献36

同被引文献8

引证文献1

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部