期刊文献+

超高纯锗多晶材料制备工艺方法研究 被引量:3

Research on Preparation Technology of Ultra-high Purity Germanium Polycrystalline Material
下载PDF
导出
摘要 高纯锗属于半导体材料,一般通过区域熔炼法提纯制取,微量杂质元素会显著地使其电阻率降低。因此,习惯用(杂质)载流子浓度(通过电阻率和迁移率进行表征)来表示高纯锗的纯度,(杂质)载流子浓度越低,纯度越高。为提高超高纯锗多晶材料的纯度,适应空间暗物质、中微子探测、地质勘探等领域研究的需要,开展了超高纯锗多晶材料纯度的实验工艺优化实验研究。同时,进行了区熔次数的实验研究以改进工艺过程,以期找到一种新型的超高纯锗多晶材料制备工艺,使制备出的超高纯锗多晶材料纯度达到(12~13)N,载流子浓度<1×1011/cm2,电阻率>2×103Ω·cm,迁移率>1×104cm2/(V·s)。 High purity germanium is a kind of semiconductor material,it normally produced by zone melting purification,the trace amount element will reduce the specific resistance significantly.Therefore,(impurity)carrier concentration(representation by specific resistance and migration rate)is usually used for representation of the purity of high purity germanium,the lower the(impurity)carrier concentration,the higher germanium purity.The research on preparation technology of ultra-high purity germanium polycrystalline is developed in order to increase the purity of high-purity germanium polycrystalline materials,which applies to the research requirements of dark matter in space,neutrino detection,geological prospecting and the other field.Simultaneously,the experimental study of zone melting times is carried out for process improvement in order to find a new preparation process for preparation of high purity germanium polycrystalline materials with 12 N^13 N purity,carrier concentration<1×1011/cm2,specific resistance>2×103Ω·cm,migration rate>1×104 cm2/(V·s).
作者 李学洋 林作亮 米家蓉 柳廷龙 普世坤 包文瑧 李长林 LI Xue-yang;LIN Zuo-liang;MI Jia-rong;LIU Ting-long;PU Shi-kun;BAO Wen-zhen;LI Chang-lin(Yunnan Zhongke Xinyuan Crystal Materials Co.,Ltd.,Kunming,Yunnan 650000,China;Yunnan Lincang Xinyuan Germanium Industry Co.,Ltd.,Lincang,Yunnan 677000,China)
出处 《云南冶金》 2020年第1期56-60,共5页 Yunnan Metallurgy
关键词 区熔提纯 纯度 germanium zone melting purification purity
  • 相关文献

参考文献3

二级参考文献14

  • 1王季陶,半导体材料,1990年,117页
  • 2罗英浩(译),半导体材料及其制备,1986年,196页
  • 3KLAPDOR-KLEINGROTHAUS H V,DIETZ A, BAUDISL, et al. Eur Phys J A, 2001, 12: 147.
  • 4KANG K J, CHENG J P,CHEN Y H,et al. J Phys-ConfSer, 2010, 203: 012028.
  • 5AALSETH C E, BARBEAU P S, BOWDEN N S,et al PhysRev Lett, 2011, 106: 131301.
  • 6YUE Q, ZHAO W, KANG K J, et al. Phys Rev D,2014, 90:091701(R).
  • 7ARMEN GAUD E. Comptes Rendus Physique, 2012,13(6/7): 730.
  • 8BRONIATOWSKI A, DEFAY X,ARMENGAUD E, et al.Physics Letters B, 2009, 681(4): 305.
  • 9KLAPDOR-KLEINGROTHAUS H V,KRIVOSHEINA I V,DIETZ A, et al. Phys Lett B, 2004,586: 198.
  • 10AALSETH C E, AVIGNONE III F T, BRODZINSKI R L,et al. Phys Atom Nucl, 2000, 63: 1225.

共引文献17

同被引文献8

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部