期刊文献+

The Akt/glycogen synthase kinase-3β pathway participates in the neuroprotective effect of interleukin-4 against cerebral ischemia/reperfusion injury 被引量:4

The Akt/glycogen synthase kinase-3β pathway participates in the neuroprotective effect of interleukin-4 against cerebral ischemia/reperfusion injury
下载PDF
导出
摘要 Interleukin-4(IL-4) has a protective effect against cerebral ischemia/reperfusion injury. Animal experiments have shown that IL-4 improves the short-and long-term prognosis of neurological function. The Akt(also called protein kinase B, PKB)/glycogen synthase kinase-3β(Akt/GSK-3β) signaling pathway is involved in oxidative stress, the inflammatory response, apoptosis, and autophagy. However, it is not yet clear whether the Akt/GSK-3β pathway participates in the neuroprotective effect of IL-4 against cerebral ischemia/reperfusion injury. In the present study, we established a cerebral ischemia/reperfusion mouse model by middle cerebral artery occlusion for 60 minutes followed by a 24-hour reperfusion. An IL-4/anti-IL-4 complex(10 μg) was intraperitoneally administered 30 minutes before surgery. We found that administration of IL-4 significantly alleviated the neurological deficits, oxidative stress, cell apoptosis, and autophagy and reduced infarct volume of the mice with cerebral ischemia/reperfusion injury 24 hours after reperfusion. Simultaneously, IL-4 activated Akt/GSK-3β signaling pathway. However, an Akt inhibitor LY294002, which was injected at 15 nmol/kg via the tail vein, attenuated the protective effects of IL-4. These findings indicate that IL-4 has a protective effect on cerebral ischemia/reperfusion injury by mitigating oxidative stress, reducing apoptosis, and inhibiting excessive autophagy, and that this mechanism may be related to activation of the Akt/GSK-3β pathway. This animal study was approved by the Animal Ethics Committee of Renmin Hospital of Wuhan University, China(approval No. WDRY2017-K037) on March 9, 2017. Interleukin-4(IL-4) has a protective effect against cerebral ischemia/reperfusion injury. Animal experiments have shown that IL-4 improves the short-and long-term prognosis of neurological function. The Akt(also called protein kinase B, PKB)/glycogen synthase kinase-3β(Akt/GSK-3β) signaling pathway is involved in oxidative stress, the inflammatory response, apoptosis, and autophagy. However, it is not yet clear whether the Akt/GSK-3β pathway participates in the neuroprotective effect of IL-4 against cerebral ischemia/reperfusion injury. In the present study, we established a cerebral ischemia/reperfusion mouse model by middle cerebral artery occlusion for 60 minutes followed by a 24-hour reperfusion. An IL-4/anti-IL-4 complex(10 μg) was intraperitoneally administered 30 minutes before surgery. We found that administration of IL-4 significantly alleviated the neurological deficits, oxidative stress, cell apoptosis, and autophagy and reduced infarct volume of the mice with cerebral ischemia/reperfusion injury 24 hours after reperfusion. Simultaneously, IL-4 activated Akt/GSK-3β signaling pathway. However, an Akt inhibitor LY294002, which was injected at 15 nmol/kg via the tail vein, attenuated the protective effects of IL-4. These findings indicate that IL-4 has a protective effect on cerebral ischemia/reperfusion injury by mitigating oxidative stress, reducing apoptosis, and inhibiting excessive autophagy, and that this mechanism may be related to activation of the Akt/GSK-3β pathway. This animal study was approved by the Animal Ethics Committee of Renmin Hospital of Wuhan University, China(approval No. WDRY2017-K037) on March 9, 2017.
出处 《Neural Regeneration Research》 SCIE CAS CSCD 2020年第9期1716-1723,共8页 中国神经再生研究(英文版)
基金 supported by the National Natural Science Foundation of China,Nos.81901994(to BZ)and 81571147(to XXX) the Natural Science Foundation of Hubei Province,China,No.2019CFC847(to WWG) the Fundamental Research Funds for the Central Universities,China,No.2042018kf0149(to ML)
关键词 Akt/glycogen synthase kinase-3βpathway apoptosis autophagy cerebral ischemia/reperfusion injury infarct volume INTERLEUKIN-4 NEUROPROTECTION oxidative stress Akt/glycogen synthase kinase-3β pathway apoptosis autophagy cerebral ischemia/reperfusion injury infarct volume interleukin-4 neuroprotection oxidative stress
  • 相关文献

参考文献2

二级参考文献161

  • 1Mizushima N, Klionsky DJ. Protein turnover via autophagy: implications for metabolism. Annu Rev Nutr 2007; 27: 19-40.
  • 2Mari M, Tooze SA, Reggiori F. The puzzling origin of the autophagosomal membrane. F1000 Biol Rep 2011; 3: 25.
  • 3Mizushima N, Yoshimori T, Ohsumi Y. The role of Atg proteins in autophagosome formation. Annu Rev Cell Dev Biol 2011; 27:107-132.
  • 4Hara T, Takamura A, Kishi C, et al. FIP200, a ULK-interacting protein, is required for autophagosome formation in mammalian cells. J Cell Biol 2008; 181:497-510.
  • 5Chan EY, Longatti A, McKnight NC, Tooze SA. Kinase-inactivated ULK proteins inhibit autophagy via their conserved C-terminal domains using an Atg13-independent mechanism. Mol Cell Biol 2009; 29: 157 -171.
  • 6Ganley IG, Lam du H, Wang J, Ding X, Chen S, Jiang X. ULK1.ATG 13.FIP200 complex mediates mTOR signaling and is essential for autophagy. J Biol Chem 2009; 284:12297- 12305.
  • 7Hosokawa N, Hara T, Kaizuka T, et al. Nutrient-dependent mTORCI association with the ULKI-Atg13-FIP200 complex required for autophagy. Mol Biol Cell 2009; 20:1981-1991.
  • 8Jung CH, Jun CB, Ro SH, et al. ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol Biol Cell 2009; 20: 1992-2003.
  • 9Hosokawa N, Sasaki T, Iemura S, Natsume T, Hara T, Mizushima N. AtglO1, a novel mammalian autophagy protein interacting with Atg13. Autophagy 2009; 5:973-979.
  • 10Herman PK, Emr SD. Characterization ofVPS34, a gene required for vacuolar protein sorting and vacuole segregation in Saccharomyces cerevisiae. Mol Cell Biol 1990; 10:6742-6754.

共引文献71

同被引文献16

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部