摘要
针对一类由一阶双曲型偏微分方程构建而成的多智能体系统的迭代学习控制(iterative learning control,ILC)问题,基于系统的拓扑网络结构,利用相邻智能体的信息,构建得到基于一致性的ILC协议,当该ILC律作用于系统时,系统的一致性误差在L2空间有界;当系统的初值偏差为0时,系统的一致性误差能随着迭代学习次数的增加而趋于0。仿真算例验证了算法的有效性。
This paper deals with the iterative learning control(ILC)problem for a class of multi-agent systems with first-order hyperbolic partial differential equations.Based on the framework of network topologies,a consensus-based ILC protocol is proposed by using the nearest neighbor knowledge.When the ILC law is applied to the systems,the consensus errors on L 2 space are bounded,and can converge to zero as the iteration index tends to infinity in the absence of initial errors.Simulation examples illustrate the effectiveness of the proposed method.
作者
郁鹏飞
傅勤
YU Pengfei;FU Qin(School of Mathematics and Physics,Suzhou University of Science and Technology,Suzhou,Jiangsu 215009,China)
出处
《中国科技论文》
CAS
北大核心
2019年第11期1185-1191,共7页
China Sciencepaper
基金
苏州科技大学研究生科研创新计划项目(SKCX18_Y01)
苏州市大数据与信息服务重点实验室基金资助项目(SZS201813)
关键词
迭代学习控制
一阶双曲型偏微分方程
多智能体系统
一致性协议
L2空间
iterative learning control(ILC)
first-order hyperbolic partial diffferential equations
multi-agent systems
consensus protocol
L 2 space