期刊文献+

归类精度导引的在线图像集自适应压缩方法

Adaptive compression method for online image sets with classification accuracy preservation
下载PDF
导出
摘要 针对多源视频流中的图像分类任务,提出了归类精度导引的在线图像集自适应压缩方法,首先对初始的在线图像集进行基于卷积神经网络(convolutional neural network,CNN)的模型训练,得到图像分类器;然后根据连续图像集之间的相似性,后一在线图像集的双参数参考前一在线图像集的双参数,通过引入自适应的参数判决机制有效地压缩连续的在线图像集。实验结果表明,所提方法能够保持足够大的平均压缩比,与现有的图像集压缩方法相比,可将平均归类精度提高3.3%。 Aiming at the image classification in multi-source video streams,this paper proposes an adaptive compression method for online image sets with classification accuracy preservation.The proposed method firstly performed the convolutional neural network(CNN)training on an initial online image set to obtain a classification model.Then,based on the similarity of continuous image sets,the double-parameter compression strategy of the latter online image set could refer to that of the previous online image set,and these continuous online image sets were effectively compressed by introducing an adaptive parameter decision mechanism.The experimental results show that the proposed method can maintain a large enough compression ratio,while the average classification accuracy can be improved by 3.3%as compared with the existing image set compression method.
作者 吴乐明 刘浩 WU Leming;LIU Hao(College of Information Science and Technology,Donghua University,Shanghai 201620,China)
出处 《中国科技论文》 CAS 北大核心 2019年第11期1265-1270,共6页 China Sciencepaper
基金 上海市自然科学基金资助项目(18ZR1400300)
关键词 在线图像集 卷积神经网络 图像集压缩 质量因子 图像尺度 online image set convolutional neural network(CNN) image set compression quality factor image scale
  • 相关文献

参考文献4

二级参考文献33

  • 1杨春玲,陈冠豪,谢胜利.基于梯度信息的图像质量评判方法的研究[J].电子学报,2007,35(7):1313-1317. 被引量:62
  • 2Wang Z, Bovik A C, Sheikh H R, et al. Image quality assess- ment: from error visibility to structural similarity [ J ]. IEEE Transactions on Image Processing, 2004, 13(4) : 1-14.
  • 3Chang H W, Yang H, Gan Y, et al. Sparse feature fidelity for perceptual image quality assessment [ J ] IEEE Transactions on Image Processing, 2013, 22(10): 4007-4018,.
  • 4Wang Z, Bovik A C. Auniversal image quality index [ J]. IEEE Signal Processing Letters, 2002, 9 ( 3 ) : 81-84.
  • 5Zhang L, Zhang L, MouX Q, et al. FSIM : a feature similarity in- dex for image quality assessment [ J ]. IEEE Transactions on Im- age Processing, 2011, 20(8): 2378-2386.
  • 6Guo L, Chen W L, Liao Y, et al. Multi-scale structural image quality assessment based on two-stage low-level features [ J ]. Computers and Electrical Engineering, 2014, 40 : 1101-1110.
  • 7Kovesi P. Image features from phase congruency [ J]. Videre: J Comp. Vis. Res. , 1999,1(3) :1-26.
  • 8Liu Z, Laganie"re R. Phase congruence measurement for image similarity assessment [ J]. SeienceDireet, 2007, 28 ( 1 ) : 166- 172.
  • 9Abdou I E, Dusaussoy N J. Survey of image quality measure- ments [ C ]// Proceedings of ACM Fall joint Computer Confer- ence. Washington DC : IEEE, 1986:71-78.
  • 10Ponomarenko N, Lukin V, Zelensky A, et al. TID2008-a data- base for evaluation of full reference visual quality assessment met- rics[ J]. Advances of Modem Radio Electronics, 2009, 10: 30- 45.

共引文献1808

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部