期刊文献+

Interfacial Stress Analysis on Skutterudite-based Thermoelectric Joints under Service Conditions

下载PDF
导出
摘要 In thermoelectric(TE)devices,the interfacial reliability greatly influenced devices’durability and power output.For skutterudites(SKD)devices,TE legs and electrodes are bonded together with diffusion barrier layer(DBL).At elevated temperatures,DBL react with SKD matrix or electrode to generate complex interfacial microstructures,which often accompanies evolutions of the thermal,electrical and mechanical properties at the interfaces.In this work,a finite element model containing the interfacial microstructure characteristics based on the experimental results was built to analyze the interfacial stress state in the skutterudite-based TE joints.A single-layer model was applied to screen out the most important parameters of the coefficient of thermal expansion(CTE)and the modulus of DBL on the first principle stress.The multilayer model considering the interfacial microstructures evolution was built to quantitively simulate the stress state of the TE joints at different aging temperatures and time.The simulation results show that the reactive CoSb2 layer is the weakest layer in both SKD/Nb and SKD/Zr joints.And by prolonging the aging time,the thickness of the reaction layer continuously increased,leading to a significant raising of the interfacial stress.The tensile testing results of the SKD/Nb joints match the simulation results well,consolidating accuracy and feasibility of this multilayer model.This study provides an important guidance on the design of DBL to improve the TE joints’mechanical reliability,and a common method to precisely simulate the stress condition in other coating systems.
出处 《无机材料学报》 SCIE EI CAS CSCD 北大核心 2020年第2期224-230,I0006-I0008,共10页 Journal of Inorganic Materials
基金 National Key Research and Development Program of China(2018YFB0703600) National Natural Science Foundation of China(51572282,51632010,11572050) Youth Innovation Promotion Association CAS。
  • 相关文献

参考文献1

二级参考文献11

  • 1Rowe D M.CRC Handbook of Thermoelectrics,USA,New York:CRC Press,1995:621-625.
  • 2Disalvo F J.Science,1999,285(30):703-705.
  • 3Orihashi M,Noda Y,Chen L D,et al.Proc.17th Inter.Conf.on Thermoelectrics,Japan,Nagoya:IEEE,1998:543-547.
  • 4Elgenk M S,Saber H H,Caillat T.Energ.Convers.Manage.,2003,44(11):1755-1759.
  • 5Sales B C,Mandrus D,Willams R K.Science,1996,272(12):1325-1327.
  • 6Nolas G S,Cohn J L,Slack G A.Phys.Rev.B,1998,58(1):164-168.
  • 7Tang X F,Zhang L M,Yuan R Z,et al.J.Mater.Res.,2001,16(12):3343-3348.
  • 8Lamberton G A,Tedstrom R H,Tritt T M,et al.J.Appl.Phys.,2005,97(11):113715-1-5.
  • 9Elgenk M S,Saber H H,Caillat T,et al.Energ.Convers.Manage.,2006,47(2):174-178.
  • 10Gao M,Rowe D M.J.Power Sources,1992,38(3):253-258.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部