期刊文献+

基于Mean Shift的大批量遥感影像分割方法 被引量:6

Segmentation of large scale remote sensing image based on Mean Shift
下载PDF
导出
摘要 由于收敛速度快、分割精度好,Mean Shift算法被广泛应用于影像分割中,但是处理大遥感影像时,Mean Shift算法存在速度慢、效率低下等问题。为此提出一种基于Mean Shift的分块并行无缝分割算法。首先在分块并行Mean Shift分割的基础上,通过标签影像的统一编码和重叠区域标签值建立对应关系,确定分块线的消除准则;然后进行标签影像的行和列拼接;最后对拼接后的标签影像进行矢量化,生成最终分割结果。实验表明,该算法相对于原始Mean Shift算法,在保证分割结果可靠性的同时大大提高了影像分割的效率,能够很好地解决大批量遥感影像的分割问题。 Mean Shift algorithm has been widely used in image segmentation because of its fast convergence speed and good segmentation accuracy.However,when large scale remote sensing images are processed,Mean Shift algorithm has some problems,such as slow speed and low efficiency.In this paper,a parallel seamless segmentation algorithm based on Mean Shift is proposed.The algorithm is based on block parallel Mean Shift segmentation.The elimination criterion of block lines is determined by uniform coding of label images and establishing corresponding relations between label values of overlapping regions.Then,the row and column directions of the label image are stitched together.Finally,the segmented label image is vectorized to generate the final segmentation result.Compared with the original Mean Shift algorithm,the algorithm put forward in this paper can not only ensure the reliability of segmentation results but also greatly improve the efficiency of image segmentation,and can also solve the problem of large scale remote sensing image segmentation.
作者 朱士才 翟晓彤 王宗伟 ZHU Shicai;ZHAI Xiaotong;WANG Zongwei(Jiangsu Province Surveying and Mapping Engineering Institute,Nanjing 210013,China;Jiangsu Province Archives of Surveying and Mapping Production,Nanjing 210013,China)
出处 《国土资源遥感》 CSCD 北大核心 2020年第1期13-18,共6页 Remote Sensing for Land & Resources
基金 地理国情监测国家测绘地理信息局重点实验室2017年开放基金项目“基于多特征的江苏地区主要农作物遥感提取方法研究”(编号:2017NGCM10)资助。
关键词 Mean Shift算法 影像分割 并行计算 重叠区域 无缝拼接 Mean Shift algorithm image segmentation parallel computing overlapping area seamless stitch
  • 相关文献

参考文献8

二级参考文献99

共引文献62

同被引文献60

引证文献6

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部