期刊文献+

基于混合高斯模型的跑道侵入检测方法 被引量:5

Runway Intrusion Detection Method Based on Gaussian Mixture Model
下载PDF
导出
摘要 面对机场不断增加的航班量,为了保障航班安全,避免发生跑道侵入,使用了基于混合高斯模型的背景减除法,在机场采集的视频数据中,追踪跑道安全区附近的运动目标;使用Graham Scan算法计算动态目标像素点的边框,根据前后帧之间动态目标的变化,计算其运动状态;在视频图像中标记跑道及跑道安全区,并使用旋转卡壳凸包算法计算动态目标与跑道安全区的最小距离;提出了的跑道侵入检测模型及方法,用于检测是否存在跑道侵入风险;仿真结果表明,该方法能够有效的机场安全区附近的追踪动态目标,并评估跑道侵入的告警等级。 In order to ensure flights safety and prevent runway Intrusion,Gaussian mixture model(GMM)based video background subtraction is used to track moving targets near runway safety area from video collected at the airport.The convex hull of the moving target’s pixel point set is calculated by Graham Scan algorithm and the state of motion of the moving targets is calculated by different between video frames.The distance between the moving targets and runway safety area is calculated by marking runway and runway safety area and Rotating Calipers algorithm.The runway Intrusion detection model and method are established to evaluate the safety status of the runway area.The simulation results show that this method can track moving targets near runway safety area and evaluate the alarm level of runway Intrusion efficiently and effectively.
作者 潘卫军 吴郑源 陈佳炀 邵楚涵 Pan Weijun;Wu Zhengyuan;Chen Jiayang;Shao Chuhan(Civil Aviation Flight University of China,Guanghan 618307,China;Tianfu New Area General Aviation Profession Academy,Meishan 620500,China)
出处 《计算机测量与控制》 2020年第2期63-67,共5页 Computer Measurement &Control
基金 国家重点研发计划(2018YFC0809500) 国家自然科学基金(U1433126)
关键词 跑道安全 跑道侵入 混合高斯模型 运动检测 凸包算法 runway safety runway intrusion Gaussian mixture model motion detection convex hull algorithm
  • 相关文献

参考文献3

二级参考文献43

  • 1胡以静,李政访,胡跃明.基于光流的运动分析理论及应用[J].计算机测量与控制,2007,15(2):219-221. 被引量:29
  • 2叶晓萌.先进的场面引导和控制系统在大型机场的应用[J].空中交通管理,2007(5):16-20. 被引量:3
  • 3余俊,林家明,杨建宇,张旭升,沙定国.基于新型靶的CCD摄像系统畸变测量与校正[J].光学学报,2007,27(8):1440-1442. 被引量:29
  • 4R.Y.Tsai.A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TVcameras and lenses[J].IEEE Trans.Robotics and Automation,1987,3(4):323-344.
  • 5Z.Zhang.A flexible new technique for camera calibration[J].IEEE Trans.Pattern Analysis and Machine Intelligence,2000,22(11):1330-1334.
  • 6J.Heikkila.Moment and curvature preserving technique foraccurate ellipse boundary detection[C].Proc.14th Int′l Conf.Pattern Recognition,1998,734-737.
  • 7J.Heikkila.Geometric camera calibration using circular controlpoints[J].IEEE Trans.Pattern Analysis and MachineIntelligence,2000,22(10):1066-1077.
  • 8Damien Douxchamps,Kunihiro Chihara.High-accuracy androbust localization of large control markers for geometric cameracalibration[J].IEEE Trans.Pattern Analysis and MachineIntelligence,2009,31(2):376-383.
  • 9R.Hartley,A.Zisserman.Multiple View Geometry inComputer Vision[M].Cambridge Univ.Press,2003.
  • 10M.Galassi,J.Davies,J.Theiler et al..GNU Scientific LibraryReference Manua[M].Second ed.,Bristol:Network TheoryLtd.,2006.

共引文献58

同被引文献45

引证文献5

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部