期刊文献+

改进鲸鱼算法构建混合模型的建筑能耗预测 被引量:6

Building Energy Consumption Prediction Based on Hybrid Model Constructed by Improved Whale Algorithms
下载PDF
导出
摘要 建筑能耗数据具有非平稳和非线性特征,单一预测模型很难对其进行精准预测,提出一种用于建筑能耗短期预测的新型混合模型;利用互补集合经验模态分解方法(CEEMD)将波动性较大的能耗数据分解为一组本征模态函数和一个残差序列;基于反向学习、差分进化算法并引入控制参数λ对鲸鱼优化算法(WOA)进行改进,有效解决算法早熟收敛与陷入局部最优等的问题,提出改进算法UWOA(upgraded whale optimization algorithm);利用UWOA优化Elman神经网络的权值与阈值,优化后的Elman神经网络对本征模态函数和残差序列进行预测并集成,得到能耗预测值;应用CEEMD-UWOA-Elman混合模型对上海某大型公共建筑能耗进行短期预测,结果显示混合模型获得很好的预测效果。 Building energy consumption data has non-stationary and nonlinear characteristics.A single prediction model is difficult to predict accurately,and a new hybrid model for short-term prediction of building energy consumption is proposed.Complementary ensemble empirical mode decomposition(CEEMD)is utilized to decompose volatility energy data into a set of intrinsic mode functions and a residual sequence.Based on reverse learning,differential evolution algorithm and control parameters,the Whale Optimization Algorithm(WOA)is upgraded to effectively solve the problem of premature convergence and local optimality,and the upgraded whale optimization algorithm(UWOA)is proposed.UWOA is utilized to optimize the weights and thresholds of the Elman neural network.The optimized Elman neural network predicts and integrates the intrinsic mode functions and the residual sequence,and then the energy prediction is obtained.The CEEMD-UWOA-Elman hybrid model is used to predict the energy consumption of a large public building in Shanghai.The results show that the hybrid model has a good prediction effect.
作者 王茹 宋爽 贺佳 Wang Ru;Song Shuang;He Jia(College of Information and Control Engineering,Xi'an University of Architecture and Technology,Xi'an 710055,China)
出处 《计算机测量与控制》 2020年第2期197-201,205,共6页 Computer Measurement &Control
基金 国家自然科学基金(51278400)
关键词 改进的鲸鱼优化算法 互补集合经验模态分解 建筑能耗 预测 upgraded whale optimization algorithm complementary ensemble empirical mode decomposition building energy consumption prediction
  • 相关文献

参考文献2

二级参考文献5

共引文献19

同被引文献63

引证文献6

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部