期刊文献+

基于聚类的云隐私行为挖掘技术 被引量:3

Privacy Behavior Mining Technology for Cloud Computing Based on Clustering
下载PDF
导出
摘要 随着云计算的不断普及,隐私安全问题逐渐显现,已成为制约云计算发展的重要障碍。受经济社会"问责制"的启发,从规范和约束云参与者隐私行为的角度,针对云参与者的隐私违约认定的问题,进行了基于审查对象隐私行为挖掘的研究。对隐私日志行为数据进行预处理,采用夹角余弦法来定义任意两个隐私会话之间的相似度并构建云隐私间的相似度矩阵,选择K-均值聚类算法对隐私会话基于设置的云隐私规则进行相似度聚类。实验测试结果表明所提出的隐私聚类挖掘技术能够精确地对云系统隐私行为及其相似度进行识别并聚类。 With the continuous popularity of cloud computing,privacy and security issues have gradually emerged,which has become an important factor restricting the development of cloud computing.Inspired by the economic and social“accountability system”,this paper,from the perspective of regulating and restricting the privacy behavior of cloud participants,aims at the identification of privacy breach of contract of cloud participants,conducts a research based on the mining of privacy behavior of censors.Firstly,the data of privacy log behavior are preprocessed,then the similarity between any two privacy sessions is defined by the angle cosine method,and the similarity matrix between cloud privacy is constructed.Finally,it chooses K-means clustering algorithm to cluster the similarity of privacy sessions based on the set cloud privacy rules.Experimental results show that the proposed privacy clustering mining technology can accurately identify and cluster the privacy behavior similarity of cloud systems.
作者 王杰 陈志刚 刘加玲 程宏兵 WANG Jie;CHEN Zhigang;LIU Jialing;CHENG Hongbing(School of Computer Science&Engineering,Central South University,Changsha 410012,China;College of Computer Science&Technology,Hengyang Normal College,Hengyang,Hunan 421002,China;College of Computer Science&Technology,Zhejiang University of Technology,Hangzhou 310023,China)
出处 《计算机工程与应用》 CSCD 北大核心 2020年第5期80-84,共5页 Computer Engineering and Applications
基金 国家自然科学基金(No.61672540,No.61402413)
关键词 云计算 隐私保护 聚类 数据挖掘 cloud computing privacy-preserving clustering data mining
  • 相关文献

参考文献2

二级参考文献17

  • 1Zhou B, Pei J. Preserving privacy in social networks against neighborhood attacks[ A] .2008 ml.l. 24 International Confer-ence on Dam Engineering[ C]. Cancun, Mexico: IEEE Comput- er Society,2008. 506 - 515.
  • 2Liu K, Terzi E. Towards identity anonymization on graph[ A]. 2008 ACM SIGMOD International Conference on Management of Data [ C ]. Vancouver, Canada: Association for Computing Machinery,2008.93 - 106.
  • 3Zou L, Chen L, 0zsu M T. K-automorphism: A general frame- work for privacy preserving network publication [ J ]. Proceed- ings of the VLDB Endowment, 2009,2(1) :946 - 957.
  • 4Hay M, Mikian G, Jensen D, Weis P, et al. Anonymizing social networks[ R]. University of Massachusetts Amherst,2007.
  • 5Ying X W,Wu X T. Randomizing social networks:A spectrum preserving approach[ A ]. 2008 8 SIAM International Confer- ence on Data Mining[ C]. Atlanta, United States:Society for In- dustrial and Applied Mathematics Publications, 2008. 739- 750.
  • 6Liu L, Wang J, Liu J et al. Privacy preserving in social net- works against sensitive edge disclosure E R ]. Department of Computer Science, University of Kentucky, 2008.
  • 7Das S,Egeciogiu 0,Abbadi A E. An6nimos: An I_P-based ap- proach for anonymizing edge-weighted social network graphs [ J ]. IEEE Transactions on Knowledge and Data Engineering, 2012,4(4) :590 - 603.
  • 8Li Y, Shen H. Anonymizinggraphs against weight-based attacks [ A]. 2010 102 1EEE International Conference on Data Mining Workshops[ C]. Sydney,Australia: 1EEE, 2010.491 - 498.
  • 9Skarkala M E, Maragoudakis M, Gritzalis S et al. Privacyp- reservation by k-anonymization of weighted social networks [A]. 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining[ C]. Istanbul, Turkey: IF.EE Computer Society,2012.423- 428.
  • 10王树禾.图论(第二版)[M].北京:科学出版社,2009:177-180.

共引文献5

同被引文献26

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部