期刊文献+

改进型Gabor自商图算法及其在人脸识别中的应用 被引量:3

Improved Gabor Self Quotient Image Algorithm and Its Application to Face Recognition
下载PDF
导出
摘要 光照变化是影响人脸识别系统性能的关键问题之一,针对该问题提出了一种改进的基于Gabor特征的自商图算法。对人脸图像采用改进的加权Gabor滤波器进行平滑的Gabor特征提取,使用自商图像的方法求取图像的光照不变特征;对得到的自商图像用直方图截断等方法进行归一化;在Extended Yale B与CMU PIE人脸库上通过基于皮尔逊相关系数的最近邻方法进行实验。实验结果表明,与传统算法相比,该算法可以大幅度提高人脸识别率。 Varying illumination remains one of the major challenges for current face recognition systems.To deal with the illumination variation problem,an improved self quotient images algorithm based on Gabor features is proposed.Firstly,the modified weighted Gabor filter is used to extract the Gabor feature of the face image,then the illumination invariant characteristics of the image is obtained by using the self quotient images algorithm.The self quotient image is normalized by histogram truncation.Finally,the experiment is carried out on Extended Yale B and CMU PIE face library by the nearest neighbor classifier based on Pearson correlation coefficient.Compared with the traditional algorithm,experimental results show that the algorithm significantly improves the face recognition rate.
作者 袁小平 崔棋纹 程干 张侠 张毅 王溯源 YUAN Xiaoping;CUI Qiwen;CHENG Gan;ZHANG Xia;ZHANG Yi;WANG Suyuan(School of Information and Control Engineering,China University of Mine and Technology,Xuzhou,Jiangsu 221116,China)
出处 《计算机工程与应用》 CSCD 北大核心 2020年第5期206-213,共8页 Computer Engineering and Applications
基金 科技部科技支撑项目(No.2013BAK06B08)
关键词 人脸识别 GABOR特征 自商图像 光照不变特征 图像增强 face recognition Gabor feature self quotient image illumination invariant image enhancement
  • 相关文献

参考文献1

二级参考文献22

  • 1Georghiades A,Belhumeur P,Kriegman D.From few to many:Illumination cone models for face recognition under variable lighting and pose.IEEE Trans.on Pattern Analysis and Machine Intelligence,2001,23(6):643-660.
  • 2Zhao W,Chellappa R,Rosenfeld A,Phillips P.Face recognition:A literature survey.UMD CfAR Technical Report,CAR-TR-948,2000.
  • 3Murase H,Nayar S.Learning and recognition of 3D object from appearance.In:Proc.of the IEEE Workshop on Qualitative Vision.1993.39-50.
  • 4Georghiades A,Kriegman D,Belhumeur P.Illumination cones for recognition under variable lighting:Faces.In:Proc.of the IEEE Computer Society Conf.on Computer Vision and Pattern Recognition.1998.52-58.
  • 5Basri R,Jacobs D.Lambertian reflectance and linear subspaces.In:Proc.of the Int'l Conf.on Computer Vision.2001.383-390.
  • 6Lee K,Ho J,Kriegman D.Nine points of light:Acquiring subspaces for face recognition under variable lighting.In:Proc.of the Computer Vision & Pattern Recognition.2001.519-526.
  • 7Zhang L,Samaras D.Face recognition under variable lighting using harmonic image exemplars.In:Proc.of the Computer Vision & Pattern Recognition.2003.19-25.
  • 8Lee J,Moghaddam B,Pfister H,Machiraju R.A bilinear illumination model for robust face recognition.In:Proc.of the IEEE Int'l Conf.on Computer Vision.2005.1177-1184.
  • 9Zimmerman J,Pizer S,Staab E,Perry J,McCartney W,Brenton B.An evaluation of the effectiveness of adaptive histogramequalization for contrast enhancement.IEEE Trans.on Medical Imaging,1988,7(4):304-312.
  • 10Shan S,Gao W,Cao B,Zhao D.Illumination normalization for robust face recognition against varying lighting conditions.In:Proc.of the IEEE Workshop on Analysis and Modeling of Faces and Gestures.2003.157-164.

共引文献4

同被引文献30

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部