期刊文献+

一种通用的恶意域名检测集成学习方法 被引量:1

A universally ensemble learning method of malicious domain detection
下载PDF
导出
摘要 僵尸网络是指采用一种或多种传播手段,将大量主机感染僵尸病毒,从而在主控者和被感染主机之间,通过命令控制服务器,形成一个一对多控制的网络。攻击者操纵僵尸网络通常会使用多个域名来连接至C2服务器,达到操控受害者主机的目的。这些域名一般被硬编码在恶意程序中,使得攻击者能便捷地更改这些域名。为了躲避封禁,这些域名通常由域生成算法(Domain Generation Algorithms,DGA)生成。针对普遍的机器学习检测DGA域名方式存在样本不充分及通用型不强的问题,文章在研究了大量DGA域名生成算法的基础上进一步完善黑白样本,利用文本分析的手段结合GaussianHMM、LSTM、BernoulliNB模型提取具备普遍区分能力的特征,构建一个具备低风险结构的通用DGA检测集成学习方法。 Botnet refers to the use of one or more means of transmission,which will infect varieties of servers with zombie virus,therefore could result in a potential one to many control network between the controller and the infected servers.In order to gain the control of the infected servers,establishment of connections from multiple domains to C2 server would normally be used upon virus network.These domains could be programmed into codes,which could be easily changed by the hackers.To avoid being banned,these domains are normally generated by using Domain Generation Algorithms(DGA).Actually,some studies showed machine learning methods to cope with the issue mentioned.However,these methods does have issues such as insufficient samples and non-universal.This paper focus on the improvements of WriteBlack Sampling based on the fundamental of DGA by using text analysis in combination with GaussianHMM,LSTM,BernoulliNB.These models could effectively subtract the key features,therefore construct a low risk structured universally used DGA ensemble machine learning model.
作者 刘浩杰 皇甫道一 李岩 王涛 Liu Haojie;Huang Fudaoyi;Li Yan;Wang Tao(Suning technology group,Jiangsu Nanjing 210000)
机构地区 苏宁科技集团
出处 《网络空间安全》 2019年第9期26-32,共7页 Cyberspace Security
关键词 僵尸网络 恶意域名 域名生成算法 集成学习 botnet malicious domain domain generation algorithms ensemble learning
  • 相关文献

参考文献7

二级参考文献46

  • 1Leder W. Know Your Enemy: Containing Conficker [R]. The Honeynet Project Research Alliance, University of Bonn, Germany, 2009.
  • 2Royal P. On the kraken and bobax bomets[R/OL], http://www.damballa, com/downloads/r_pubs/Kraken Respons pdf, 2009.
  • 3Stone-Gross ],Cova M,Vigna G. Your Botnet is My Botnet:A- nalysis of A Botnet Takeover [C]//ACM Conference on Com- puter and Communications Security(CCS). 2009:635-647.
  • 4Yadav S, Reddy A, Ranjan S. Detecting Algorithmically Genera- ted Malicious Domain Names [A]//10th Annual ACM Confer- ence on Internet Measurement[C]. New York,USA, 2010:48-61.
  • 5Stalmans E, Irwin B. A Framework for DNS Based Detection and Mitigation of Malware Infections on a Network [A]//lnfor- mation Security South Africa(ISSA)[C]. 2011:76-83.
  • 6Jiang N, Zhang Z. Identifying Suspicious Activities through DNS Failure Graph Analysis [A]//Network Protocols (ICNP), the 18th IEEE International Conference [C]. 2010:144-153.
  • 7Yadav S, Reddy A N. Winning with DNS Failures: Strategies for Faster Botnet Detection [A]// 7th International ICST Confe- rence on Security and Privacy in Communication Networks [C]. 2011:133-145.
  • 8Hao S, Feamster N, Pandrangi. An Internet Wide View into DNS Lookup Patterns[R/OL] http://labs, verisignine, corn/ projects/malicious-domain-names, html, 2010.
  • 9Antonakakis M,Perdisci R, Dagon D, et al. Building A Dynamic Reputation System for DNS[A]//the Proceedings of 19th USENIX Security Symposium ( USENIX Security ' 10 ) [ C]. 2010 : 273-289.
  • 10Antonakakis M, Lee R, Dagon D. Detecting Malware Domains at the Upper DNS Hierarchy [A]//the Proceedings of 20th USE- NIX Security Symposium(USENIX Security 11)[C]. 2011:23- 46.

共引文献56

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部