摘要
针对高分辨率遥感影像中阴影检测精度易受水体、植被等因素干扰的问题,通过分析高分二号影像中典型地物的光谱特征,构建了一种集成特征分量与面向对象分类相结合的阴影检测方法。构建的特征分量包括:主成分第一分量PC1、亮度分量I、归一化差分植被指数NDVI及水体指数WI。将各特征分量进行归一化处理,建立包含波段均值、标准差等特征的规则集,对影像的I和PC1分量进行多尺度分割,结合面向对象的方法进行阴影检测。选取不同区域遥感影像进行实验,实验结果表明:与传统基于像素的阴影提取方法相比,该方法提取出的阴影斑块完整,且能有效地减弱水体和植被的影响。
The shadow detection accuracy in the high-resolution remote sensing images is easily disturbed by water,vegetation and so on.This study proposed a shadow detection method based on object-oriented method and established characteristic components by analyzing the spectral characteristics of typical features in GF-2 satellite images.The following components were constructed to detect shadow information:first principal com⁃ponent(PC1),brightness component I,Normalized Difference Vegetation Index(NDVI)and Water Index(WI).And then,we normalized each characteristic component to establish a rule set containing features such as band mean,standard deviation.Brightness I and PC1 were chosen as the main data source for multi-resolution segmentation,at last,performed object-oriented method on the segmented images to detect shadow.Selected different areas of GF-2 images for the proposed method,and experimental results show that the proposed meth⁃od could extract complete shadow patches and effectively reduce the influence of water bodies and vegetation compared with pixel-based method.
作者
李强
冯德俊
瑚敏君
伍燚垚
杨历辉
Li Qiang;Feng Dejun;Hu Minjun;Wu Yiyao;Yang Lihui(Faculty of Geosciences and Environmental Engineering,Southwest Jiaotong University,Chengdu 611730,China)
出处
《遥感技术与应用》
CSCD
北大核心
2019年第6期1252-1260,共9页
Remote Sensing Technology and Application
基金
国家重点研发计划项目(2016YFC0803105)
四川省科技厅重点研发项目“自然资源资产评价关键技术研究及应用示范”(2017)资助
关键词
阴影检测
特征分量
面向对象分类
GF-2影像
Shadow detection
Characteristic components
Object-oriented classification
GF-2